Advanced Algorithms

南京大学

尹一通
Set Cover

Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U$.
Find the smallest $C \subseteq \{1, 2, ..., m\}$ that $\bigcup_{i \in C} S_i = U$.
Hitting Set

Instance: A number of sets $S_1, S_2, \ldots, S_n \subseteq U$.

Find the smallest $H \subseteq U$ that $\forall i$, $S_i \cap H \neq \emptyset$.

![Diagram showing hitting set](image)
Instance: A number of sets \(S_1, S_2, \ldots, S_m \subseteq U \). Find the smallest \(C \subseteq \{1, 2, \ldots, m\} \) that \(\bigcup_{i \in C} S_i = U \).

- **NP-hard**
- one of Karp’s 21 **NP**-complete problems
- **frequency**: # of sets an element is in

\[
\text{frequency}(x) = |\{S_i : x \in S_i\}|
\]
Vertex Cover

Instance: An undirected graph $G(V,E)$

Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

![Incidence graph](image)

The incidence graph of the set cover instance with frequency $=2$.
Vertex Cover

Instance: An undirected graph $G(V,E)$

Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

- **NP-hard**
- one of Karp’s 21 NP-complete problems

$\text{VC is NP-hard} \Rightarrow \text{SC is NP-hard}$
Computational Complexity

- decision problem \(f: \{0,1\}^* \rightarrow \{0,1\} \)

- formal language \(L \subseteq \{0,1\}^* \quad L = \{x: f(x)=1\} \)

- poly-time Turing machine (Algorithm) \(M \):
 \[\forall \text{ input } x \in \{0,1\}^*, M(x) \text{ terminates in time } < \text{ poly}(|x|) \]

- \(P, NP \): classes of formal languages (decision problems)
 - \(L \in P \): \(\exists \) poly-time TM \(M \) **decides** \(L \)
 - \(x \in L \Rightarrow M(x) \) accepts;
 - \(x \notin L \Rightarrow M(x) \) rejects
 - \(L \in NP \): \(\exists \) poly-time TM \(M \) **verifies** \(L \)
 - \(x \in L \Rightarrow \exists \text{ certificate } y \in \{0,1\}^*, M(x,y) \) accepts;
 - \(x \notin L \Rightarrow \forall y \in \{0,1\}^*, M(x,y) \) rejects;

 nondeterministic poly-time TM accepts \(L \)
Computational Complexity

• decision problem \(f: \{0,1\}^* \rightarrow \{0,1\} \)
• formal language \(L \subseteq \{0,1\}^* \quad L = \{x: f(x)=1\} \)
• poly-time Turing machine (Algorithm) \(M \):
 \(\forall \) input \(x \in \{0,1\}^* \), \(M(x) \) terminates in time < \(\text{poly}(|x|) \)
• \(P, NP \): classes of formal languages (decision problems)
• \(L \in P \): \(\exists \) poly-time TM \(M \) \textit{decides} \(L \)
 \(\bullet x \in L \Rightarrow M(x) \) accepts; \quad \(\bullet x \notin L \Rightarrow M(x) \) rejects
• \(L \in NP \): \(\exists \) poly-time TM \(M \) \textit{verifies} \(L \)

\(L \in \text{coNP} \): \(\overline{L} \in \text{NP} \) \quad “no”-instances are easy to verify
\(P \subseteq NP \cap \text{coNP} \)
Computational Complexity

- decision problem \(f: \{0,1\}^* \rightarrow \{0,1\} \)
- formal language \(L \subseteq \{0,1\}^* \quad \text{and} \quad L = \{ x : f(x) = 1 \} \)
- poly-time (Turing) *reduction* from \(L \) to \(L' \):

 a poly-time TM \(M \) that decides \(L \)

 given accesses to an *oracle* that decides \(L' \)

 \(L' \) is poly-time decidable \(\Rightarrow \) \(L \) is poly-time decidable

 \(L \) is hard \(\Rightarrow \) \(L' \) is hard

 “\(L' \) is at least as hard as \(L \) ”

- a problem is *NP-hard* if every \(L \in \text{NP} \) is poly-time reducible to it
- \(L \) is *NP-complete* if \(L \in \text{NP} \) and \(L \) is *NP-hard*
Optimization

Optimization problem Π: minimization/maximization

- a set D of valid instances (inputs);
- each instance $I \in D$ defines a set of feasible solutions $S(I)$;
- an objective function obj that assigns each instance $I \in D$ and solution $s \in S(I)$ a value.

NP-optimization problem Π:

- feasibility of a solution is poly-time checkable;
- objective function is poly-time computable.

optimal solution is certificate

Optimization: thresholding

What is the optimal solution?

Decision: binary search

Can any solution be this good?
Approximation

Optimization problem Π: minimization/maximization

• a set D of valid instances (inputs);

• each instance $I \in D$ defines a set of feasible solutions $S(I)$;

• an objective function obj that assigns each instance $I \in D$ and solution $s \in S(I)$ a value.

$$\text{OPT}(I) = \text{objective value of optimal solution}$$

$$s^* \in S(I) \text{ of instance } I$$

• algorithm A: returns a solution $s \in S(I)$ on every instance I

$$\text{SOL}_A(I) = \text{objective value of the solution } s \in S(I)$$

returned by A on instance I

minimization: approximation ratio of algorithm A is α

if \forall instance I :

$$\frac{\text{SOL}_A(I)}{\text{OPT}(I)} \leq \alpha$$
Approximation

Optimization problem Π: minimization/maximization

- a set D of valid instances (inputs);
- each instance $I \in D$ defines a set of feasible solutions $S(I)$;
- an objective function obj that assigns each instance $I \in D$ and solution $s \in S(I)$ a value.

\[
\text{OPT}(I) = \text{objective value of optimal solution } s^* \in S(I) \text{ of instance } I
\]

- algorithm A: returns a solution $s \in S(I)$ on every instance I

\[
\text{SOL}_A(I) = \text{objective value of the solution } s \in S(I) \text{ returned by } A \text{ on instance } I
\]

maximization: approximation ratio of algorithm A is α

if \forall instance I:

\[
\frac{\text{SOL}_A(I)}{\text{OPT}(I)} \geq \alpha
\]
Set Cover

Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.
Find the smallest $C \subseteq \{1, 2, \ldots, m\}$ that $\bigcup_{i \in C} S_i = U$.

GreedyCover

Initially $C=\emptyset$;
while $U \neq \emptyset$ do:
 add i with largest $|S_i \cap U|$ to C;
 $U = U \setminus S_i$;
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

GreedyCover

Initially $C = \emptyset$;

while $U \neq \emptyset$ do:

1. add i with largest $|S_i \cap U|$ to C;
2. $U = U \setminus S_i$; $\forall x \in S_i, \ \text{price}(x) = 1/|S_i \cap U|$

$|C| = \sum_{x \in U} \text{price}(x)$

enumerate x_1, x_2, \ldots, x_n in the order in which they are covered

elements can be matched to the sets in OPT cover

$\exists S_i, \ |S_i| \geq \frac{|U|}{OPT}$

$\Rightarrow \text{price}(x_1) \leq \frac{OPT}{|U|}$
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

GreedyCover

Initially $C=\emptyset$;

while $U\neq \emptyset$ do:

- add i with largest $|S_i \cap U|$ to C;
- $U = U \setminus S_i$; \(\forall x \in S_i, \text{ price}(x) = 1/|S_i \cap U|\)

\[|C| = \sum_{x \in U} \text{price}(x) \]

enumerate x_1, x_2, \ldots, x_n in the order in which they are covered

consider U_t in iteration t where x_k is covered:

\[|U_t| \geq n-k+1 \]

all $S_i \cap U_t$ form a set cover instance: \(\leq \text{OPT}\)

\[\text{price}(x_k) \leq \frac{\text{OPT}}{n-k+1} \]
Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U$.

GreedyCover

Initially $C = \emptyset$;

while $U \neq \emptyset$ do:

add i with largest $|S_i \cap U|$ to C;

$U = U \setminus S_i$; \(\forall x \in S_i, \text{price}(x) = 1/|S_i \cap U| \)

\[
|C| = \sum_{x \in U} \text{price}(x) \leq \sum_{k=1}^{n} \frac{OPT}{n-k+1} = H_n \cdot OPT
\]

enumerate $x_1, x_2, ... x_n$ in the order in which they are covered

\[
\text{price}(x_k) \leq \frac{OPT}{n-k+1}
\]
GreedyCover

Initially $C = \emptyset$;

while $U \neq \emptyset$ do:

add i with largest $|S_i \cap U|$ to C;

$U = U \setminus S_i$;

- **GreedyCover** has approximation ratio $H_n \approx \ln n + O(1)$.
- [Lund, Yannakakis 1994; Feige 1998] There is no poly-time $(1-o(1))\ln n$-approx. algorithm unless $\textbf{NP} = \text{quasi-poly-time}$.
- [Ras, Safra 1997] For some c there is no poly-time $c \ln n$-approximation algorithm unless $\textbf{NP} = \textbf{P}$.
- [Dinur, Steuer 2014] There is no poly-time $(1-o(1))\ln n$-approximation algorithm unless $\textbf{NP} = \textbf{P}$.
Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U$.

Primal: $C \subseteq \{1, 2, ..., m\}$ that $\bigcup_{i \in C} S_i = U$.

$$\text{OPT}_{\text{primal}} = \min | C |$$

Dual: $M \subseteq U$ that $\forall i, |S_i \cap M| \leq 1$.

$$\forall C, \forall M: | M | \leq | C |$$

every $x \in M$ must consume a set to cover

$$\forall M: | M | \leq \text{OPT}_{\text{primal}}$$
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

Primal: $C \subseteq \{1, 2, \ldots, m\}$ that $\bigcup_{i \in C} S_i = U$.

$$\text{OPT}_{\text{primal}} = \min |C|$$

Dual: $M \subseteq U$ that $\forall i, |S_i \cap M| \leq 1$.

$$\forall M: |M| \leq \text{OPT}_{\text{primal}}$$
Instance: A number of sets \(S_1, S_2, \ldots, S_m \subseteq U \).

Find a *maximal* \(M \subseteq U \) that \(\forall i, |S_i \cap M| \leq 1 \);
return \(C = \{ i : S_i \cap M \neq \emptyset \} \);

Frequency assumption:
\[\forall x \in U, \ |\{ i : x \in S_i \}| \leq f \]

\[|C| \leq f \cdot \text{OPT} \]

For vertex cover: This gives a 2-approximation algorithm.
Vertex Cover

Instance: An undirected graph $G(V,E)$

Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

a 2-approximation algorithm:

Find a *maximal matching*; return the *matched* vertices;

- There is no poly-time < 1.36-approximation algorithm unless $\text{NP} = \text{P}$.
- Assuming the unique game conjecture, there is no poly-time $(2-\varepsilon)$-approximation algorithm.
Scheduling

m machines

n jobs

Processing time p_j

3
1
4
2
6
3
5
2
4
3
Scheduling

m machines

n jobs with processing time p_j

completion time: \[C_i = \sum_{j: \text{jobs assigned to machine } i} p_j \]

makespan: \[C_{\text{max}} = \max_i C_i \]
Instance: n jobs $j=1, 2, \ldots, n$

each with processing time $p_j \in \mathbb{Z}^+$.

Solution: A schedule of n jobs to m machines

that minimizes the *makespan* C_{max}.

“minimum *makespan* on *identical* machines”: $P|_|C_{\text{max}}$

Graham’s “$\alpha|\beta|\gamma$” notation for scheduling

α: machine environment

- 1: a single machine;
- P: m identical machines;
- Q: m machines with different speed s_i, the length of job j on machine i is p_j/s_i;
- R: m unrelated machines, the length of job j on machine i is p_{ij};

β: job characteristics

- r_j: each job has a release time r_j;
- d_j: each job has a deadline d_j;
- pmtn: preemption is allowed;

γ: objective

- C_{max}: makespan; $\sum_j C_j$: total completion time; L_{max}: maximum lateness;
Instance: \(n \) jobs \(j=1, 2, \ldots, n \) each with processing time \(p_j \in \mathbb{Z}^+ \).

Solution: A schedule of \(n \) jobs to \(m \) machines that minimizes the makespan \(C_{\text{max}} \).

“minimum makespan on identical machines”: \(P|\ |C_{\text{max}} \)

When \(m=2 \), the problem can solve the **partition** problem:

Input: \(n \) numbers \(x_1, x_2, \ldots, x_n \in \mathbb{Z}^+ \).

Determine whether \(\exists \) a partition of \(\{1, 2, \ldots, n\} \) into \(A \) and \(B \) such that \(\sum_{i \in A} x_i = \sum_{i \in B} x_i \).

The **partition** problem is among Karp’s 21 NPC problems.
Graham’s *List Algorithm* (Graham 1966)

For $j=1, 2, \ldots, n$

assign job j to the current *least heavily loaded* machine;
List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$

assign job j to the current least heavily loaded machine;

n jobs: p_1, p_2, \ldots, p_n; m machines

$$OPT \geq \max_j p_j \quad OPT \geq \frac{1}{m} \sum_j p_j$$

for the schedule returned by the list algorithm:

makespan $C_{\text{max}} = C_i \leq 2 \cdot OPT$

the last job assigned to machine i is job l

before job l was assigned, machine i is the least heavily loaded

$$C_i - p_l \leq \frac{1}{m} \sum_j p_j \leq OPT$$

$$p_l \leq \max_j p_j \leq OPT$$
List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$

assign job j to the current least heavily loaded machine;

returns a schedule with makespan $C_{\text{max}} \leq \left(2 - \frac{1}{m}\right) \cdot \text{OPT}$

\[
C_i - p_\ell \leq \frac{1}{m} \sum_{j \neq \ell} p_j
\]

\[
C_i \leq \frac{1}{m} \sum_j p_j + \left(1 - \frac{1}{m}\right) p_\ell \leq \left(2 - \frac{1}{m}\right) \cdot \text{OPT}
\]
Local Search

start with a solution:

\[
\begin{align*}
&\text{let } l \text{ be a job that finished last;}
&\text{if } \exists \text{ machine } i \text{ s.t. job } l \text{ will finish earlier after reassigned to machine } i
&\text{transfer job } l \text{ to machine } i;
\end{align*}
\]

locally modify the solution to make improvement until no improvement can be made (local optimum)
Start with an arbitrary schedule; repeat until no job is reassigned (a local optimum is encountered):

- let l be a job that finished last;
- if \exists machine i s.t. job l will finish earlier after reassigned to machine i
 - transfer job l to machine i;

$$OPT \geq \max_{j} p_{j} \quad OPT \geq \frac{1}{m} \sum_{j} p_{j}$$

In a local optimum: suppose makespan $C_{\text{max}} = C_{i}$ for the job l that finished last

For the local optimum $\Rightarrow C_{i} - p_{l}$ must be the least heavily loaded

$$C_{i} - p_{l} \leq \frac{1}{m} \sum_{j \neq l} p_{j}$$

$$C_{i} \leq \frac{1}{m} \sum_{j} p_{j} + \left(1 - \frac{1}{m}\right) p_{l} \leq (2 - \frac{1}{m}) \cdot OPT$$
Start with an arbitrary schedule; repeat until no job is reassigned (a local optimum is encountered):

let \(l \) be a job that fished last;
if \(\exists \) machine \(i \) s.t. job \(l \) will finish earlier after reassigned to machine \(i \)
transfer job \(l \) to machine \(i \);

finds a schedule with makespan \(C_{\text{max}} \leq (2 - \frac{1}{m}) \cdot OPT \)

List Algorithm (Graham 1966)

For \(j=1, 2, \ldots, n \)
assign job \(j \) to the current least heavily loaded machine;

the schedule returned by the List algorithm must be a local optimum

the schedule returned by the List algorithm has makespan \(C_{\text{max}} \leq (2 - \frac{1}{m}) \cdot OPT \)
Longest Processing Time (LPT)

$\begin{array}{c}
\text{List Algorithm (Graham 1966)} \\
\text{For } j=1, 2, \ldots, n \\
\text{assign job } j \text{ to the current least heavily loaded machine;}
\end{array}$
Longest Processing Time (LPT)

$p_1 \geq p_2 \geq \cdots \geq p_n$;
for $j=1, 2, \ldots, n$
assign job j to the current least heavily loaded machine;

\[OPT \geq \frac{1}{m} \sum_{j} p_j \]

for the schedule returned by the LPT algorithm:

makespan $C_{\text{max}} = C_i \leq \frac{3}{2} \cdot OPT$
the last job assigned to machine i is job l

$C_i - p_l \leq \frac{1}{m} \sum_{j} p_j \leq OPT$

$n > m \implies p_l \leq p_{m+1}$
\[OPT \geq p_m + p_{m+1} \geq 2p_{m+1} \]
\[p_l \leq \frac{1}{2} OPT \]
Longest Processing Time (LPT)

\[p_1 \geq p_2 \geq \cdots \geq p_n; \]

for \(j = 1, 2, \ldots, n \)

assign job \(j \) to the current least heavily loaded machine;

for the schedule returned by the LPT algorithm:

\[\text{makespan } C_{\text{max}} \leq \frac{3}{2} \cdot OPT \]

- With a more careful analysis, the LPT is a \(4/3 \)-approximation algorithm.

- The problem of minimum makespan on identical machines has a **PTAS** (Polynomial Time Approximation Scheme).

\[\forall \varepsilon > 0, \exists \text{ poly-time } (1-\varepsilon)\text{-algorithm for the problem} \]
Online Scheduling

m machines

n jobs arrive one-by-one

schedule decision must be made when a job arrives without seeing jobs in the future

List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$

assign job j to the current least heavily loaded machine;
Competitive Analysis

List Algorithm (Graham 1966)

For $j = 1, 2, \ldots, n$

assign job j to the current least heavily loaded machine;

the **competitive ratio** of the online algorithm is α if:

\forall input sequence I:

solution returned by the online algorithm on I \(\leq \alpha \)

solution returned by the optimal offline algorithm on I

the list algorithm is 2-competitive