Advanced Algorithms

南京大学

尹一通
Set Cover

Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U$.
Find the smallest $C \subseteq \{1, 2, ..., m\}$ that $\bigcup_{i \in C} S_i = U$.

![Diagram showing set cover example](image-url)
Hitting Set

Instance: A number of sets $S_1, S_2, ..., S_n \subseteq U$. Find the smallest $H \subseteq U$ that $\forall i, S_i \cap H \neq \emptyset$.

```
S_1  S_2  S_3  S_4  S_5
```

```
\begin{array}{c}
x_1 \\
x_4 \\
U \\
\end{array}
```
Set Cover

Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U$.

Find the smallest $C \subseteq \{1, 2, ..., m\}$ that $\bigcup_{i \in C} S_i = U$.

- **NP-hard**
- one of Karp’s 21 **NP**-complete problems
- **frequency:** # of sets an element is in

\[
\text{frequency}(x) = \left| \{S_i : x \in S_i\} \right|
\]
Vertex Cover

Instance: An undirected graph $G(V,E)$

Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

![Incidence graph of a vertex cover instance](image)
Vertex Cover

Instance: An undirected graph $G(V,E)$

Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

- **NP-hard**
- one of Karp’s 21 NP-complete problems

VC is NP-hard \Rightarrow SC is NP-hard
Set Cover

Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.
Find the smallest $C \subseteq \{1, 2, \ldots, m\}$ that $\bigcup_{i \in C} S_i = U$.

GreedyCover

Initially $C = \emptyset$;
while $U \neq \emptyset$ do:
 add i with largest $|S_i \cap U|$ to C;
 $U = U \setminus S_i$;
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

GreedyCover

- Initially $C = \emptyset$;
- while $U \neq \emptyset$ do:
 - add i with largest $|S_i \cap U|$ to C;
 - $U = U \setminus S_i$;

OPT(I): value of minimum set cover of instance I

SOL(I): value of the set cover returned by the **GreedyCover** algorithm on instance I

GreedyCover has *approximation ratio* α if

$$\forall \text{ instance } I, \quad \frac{\text{SOL}(I)}{\text{OPT}(I)} \leq \alpha$$
Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U$.

GreedyCover

Initially $C = \emptyset$;

while $U \neq \emptyset$ do:

add i with largest $|S_i \cap U|$ to C;

$U = U \setminus S_i$;

$\forall x \in S_i$, price$(x) = 1/|S_i \cap U|$

$$|C| = \sum_{x \in U} \text{price}(x)$$

enumerate $x_1, x_2, ..., x_n$ in the order in which they are covered

elements can be *matched* to the sets in OPT cover

$$\exists S_i, |S_i| \geq \frac{|U|}{OPT} \quad \Rightarrow \quad \text{price}(x_1) \leq \frac{OPT}{|U|}$$
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

price=1/3	x_1	S_1
price=1/3	x_2	S_2
price=1	x_3	S_3
price=1/3	x_4	S_4
price=1	x_5	

GreedyCover

Initially $C=\emptyset$;

while $U \neq \emptyset$ do:

add i with largest $|S_i \cap U|$ to C;

$U = U \setminus S_i$; $\forall x \in S_i$, price(x) = $1/|S_i \cap U|$

$$|C| = \sum_{x \in U} \text{price}(x)$$

enumerate $x_1, x_2, \ldots x_n$ in the order in which they are covered

consider U_t in iteration t where x_k is covered:

$$|U_t| \geq n-k+1$$

all $S_i \cap U_t$ form a set cover instance: $\leq \text{OPT}$

$p_{\text{price}(x)}(k) \leq \frac{\text{OPT}}{n-|U_t|+1}$
Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U$.

GreedyCover

Initially $C=\emptyset$;

while $U \neq \emptyset$ do:

add i with largest $|S_i \cap U|$ to C;

$U = U \setminus S_i$; \quad \forall x \in S_i$, price$(x) = 1/|S_i \cap U|$

$|C| = \sum_{x \in U} \text{price}(x) \leq \sum_{k=1}^{n} \frac{\text{OPT}}{n-k+1} = H_n \cdot \text{OPT}$

enumerate $x_1, x_2, ..., x_n$ in the order in which they are covered

\[\text{price}(x_k) \leq \frac{\text{OPT}}{n-k+1} \]
GreedyCover

Initially $C = \emptyset$;
while $U \neq \emptyset$ do:
 add i with largest $|S_i \cap U|$ to C;
 $U = U \setminus S_i$;

• *GreedyCover* has approximation ratio $H_n \approx \ln n + O(1)$.

• [Lund, Yannakakis 1994; Feige 1998] There is no poly-time $(1-o(1))\ln n$-approx. algorithm unless $\textbf{NP} = \text{quasi-poly-time}$.

• [Ras, Safra 1997] For some c there is no poly-time $c \ln n$-approximation algorithm unless $\textbf{NP} = \textbf{P}$.

• [Dinur, Steuer 2014] There is no poly-time $(1-o(1))\ln n$-approximation algorithm unless $\textbf{NP} = \textbf{P}$.
Instance: A number of sets $S_1, S_2, \ldots, S_m \subseteq U$.

Primal: $C \subseteq \{1, 2, \ldots, m\}$ that $\bigcup_{i \in C} S_i = U$.

$$\text{OPT}_{\text{primal}} = \min |C|$$

Dual: $M \subseteq U$ that $\forall i, |S_i \cap M| \leq 1$.

$$\forall C, \forall M: |M| \leq |C|$$

every $x \in M$ must consume a set to cover

$$\forall M: |M| \leq \text{OPT}_{\text{primal}}$$
Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U$.

Primal: $C \subseteq \{1, 2, ..., m\}$ that $\cup_{i \in C} S_i = U$.

$$\text{OPT}_{\text{primal}} = \min |C|$$

Find a *maximal* M;
return $C = \{i : S_i \cap M \neq \emptyset\}$;

M is *maximal* \Rightarrow C must be a cover

$$|C| \leq f \cdot |M| \leq f \cdot \text{OPT}_{\text{primal}}$$

Dual: $M \subseteq U$ that $\forall i$, $|S_i \cap M| \leq 1$.

$$\forall M: |M| \leq \text{OPT}_{\text{primal}}$$
Instance: A number of sets $S_1, S_2, ..., S_m \subseteq U$.

Find a maximal $M \subseteq U$ that $\forall i$, $|S_i \cap M| \leq 1$; return $C = \{i : S_i \cap M \neq \emptyset\}$;

Frequency assumption:
\[\forall x \in U, \ |\{i : x \in S_i\}| \leq f \]

For vertex cover: This gives a 2-approximation algorithm.
Vertex Cover

Instance: An undirected graph $G(V,E)$

Find the smallest $C \subseteq V$ that every edge has at least one endpoint in C.

a 2-approximation algorithm:

Find a *maximal matching*; return the *matched* vertices;

- There is no poly-time <1.36-approximation algorithm unless $\text{NP} = \text{P}$.
- Assuming the unique game conjecture, there is no poly-time $(2-\varepsilon)$-approximation algorithm.
Scheduling

m machines

n jobs

processing time p_j

3
1
4
2
6
3
5
2
4
3
Scheduling

m machines

n jobs with processing time p_j

completion time:

\[C_i = \sum_{j: \text{ jobs assigned to machine } i} p_j \]

makespan:

\[C_{\text{max}} = \max_i C_i \]
Instance: \(n \) jobs \(j=1, 2, \ldots, n \)
each with processing time \(p_j \in \mathbb{Z}^+ \).

Solution: A schedule of \(n \) jobs to \(m \) machines
that minimizes the makespan \(C_{\text{max}} \).

“minimum makespan on identical machines”: \(\text{P| |C}_{\text{max}} \)

Graham’s “\(\alpha|\beta|\gamma \)” notation for scheduling

\(\alpha \): machine environment

- 1: a single machine;
- P: \(m \) identical machines;
- Q: \(m \) machines with different speed \(s_i \), the length of job \(j \) on machine \(i \) is \(p_j/s_i \);
- R: \(m \) unrelated machines, the length of job \(j \) on machine \(i \) is \(p_{ij} \);

\(\beta \): job characteristics

- \(r_j \): each job has a release time \(r_j \);
- \(d_j \): each job has a deadline \(d_j \);
- pmtn: preemption is allowed;

\(\gamma \): objective

- \(C_{\text{max}} \): makespan; \(\Sigma_j C_j \): total completion time; \(L_{\text{max}} \): maximum lateness;
Instance: n jobs $j=1, 2, ..., n$ each with processing time $p_j \in \mathbb{Z}^+$.

Solution: A schedule of n jobs to m machines that minimizes the *makespan* C_{max}.

“minimum makespan on identical machines”: $P|\ |C_{\text{max}}$

when $m=2$, the problem can solve the **partition** problem:

Input: n numbers $x_1, x_2, ..., x_n \in \mathbb{Z}^+$.

Determine whether \exists a partition of $\{1, 2, ..., n\}$ into A and B such that $\sum_{i \in A} x_i = \sum_{i \in B} x_i$.

the **partition** problem is among Karp’s 21 **NPC** problems
Graham’s List Algorithm

For \(j = 1, 2, \ldots, n \), assign job \(j \) to the current least heavily loaded machine;

\[
OPT \geq \max_j p_j
\]

\[
OPT \geq \frac{1}{m} \sum_j p_j
\]
List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$

assign job j to the *current least heavily loaded* machine;

n jobs: p_1, p_2, \ldots, p_n; m machines

\[OPT \geq \max_j p_j \quad OPT \geq \frac{1}{m} \sum_j p_j \]

for the schedule returned by the list algorithm:

makespan $C_{\text{max}} = C_i \leq 2 \cdot OPT$

the last job assigned to machine i is job l

before job l was assigned, machine i is the least heavily loaded

\[C_i - p_l \leq \frac{1}{m} \sum_j p_j \leq OPT \]

\[p_l \leq \max_j p_j \leq OPT \]
List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$

assign job j to the current least heavily loaded machine;

returns a schedule with makespan $C_{\text{max}} \leq (2 \cdot \Theta \frac{p}{m}) \cdot OPT$

Tight in the worst-case!
Local Search

start with a solution:

\[\text{locally modify the solution to make improvement until no improvement can be made (local optimum)}\]

Start with an arbitrary schedule;
repeat until no job is reassigned (a local optimum is encountered):
let \(l\) be a job that finished last;
if \(\exists\) machine \(i\) s.t. \(l\) will finish earlier after reassigned to machine \(i\)
transfer job \(l\) to machine \(i\);
Start with an arbitrary schedule; repeat until no job is reassigned (a local optimum is encountered):

let l be a job that fished last;

if \exists machine i s.t. job l will finish earlier after reassigned to machine i

transfer job l to machine i;

$$OPT \geq \max_j p_j$$

$$OPT \geq \frac{1}{m} \sum_j p_j$$

in a local optimum: suppose makespan $C_{\text{max}} = C_i$

for the job l that finished last

local optimum \Rightarrow $C_i - p_l$ must be the least heavily loaded

$$C_i - p_l \leq \frac{1}{m} \sum_{j \neq l} p_j$$

$$C_i \leq \frac{1}{m} \sum_j p_j + \left(1 - \frac{1}{m}\right) p_l \leq \left(2 - \frac{1}{m}\right) \cdot OPT$$
Start with an arbitrary schedule;
repeat until no job is reassigned (a local optimum is encountered):
 let \(l \) be a job that fished last;
 if \(\exists \) machine \(i \) s.t. job \(l \) will finish earlier after reassigned to machine \(i \)
 transfer job \(l \) to machine \(i \);

finds a schedule with makespan \(C_{\text{max}} \leq (2 - \frac{1}{m}) \cdot OPT \)

\textbf{List Algorithm (Graham 1966)}
For \(j=1, 2, \ldots, n \)
 assign job \(j \) to the current least heavily loaded machine;

the schedule returned by the List algorithm must be a local optimum

\[C_{\text{max}} \leq (2 - \frac{1}{m}) \cdot OPT \]
Longest Processing Time (LPT)

m machines

n jobs

List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$

assign job j to the current least heavily loaded machine;
Longest Processing Time (LPT)

\[p_1 \geq p_2 \geq \cdots \geq p_n; \]

for \(j = 1, 2, \ldots, n \)

assign job \(j \) to the current least heavily loaded machine;

\[\text{OPT} \geq \frac{1}{m} \sum_j p_j \]

for the schedule returned by the LPT algorithm:

makespan \(C_{\text{max}} = C_i \leq \frac{3}{2} \cdot \text{OPT} \)

the last job assigned to machine \(i \) is job \(l \)

WLOG:

\[C_i > \max_j p_j \]

\[p_\ell \leq p_{m+1} \]

\[\text{OPT} \geq p_m + p_{m+1} \geq 2p_{m+1} \]

\[p_\ell \leq \frac{1}{2} \text{OPT} \]
for the schedule returned by the LPT algorithm:

$$\text{makespan } C_{\text{max}} \leq \frac{3}{2} \cdot OPT$$

- With a more careful analysis, the LPT is a 4/3-approximation algorithm.

- The problem of minimum makespan on identical machines has a \textbf{PTAS} (\textbf{P}olynomial \textbf{T}ime \textbf{A}pproximation \textbf{S}cheme).

 $$\forall \varepsilon > 0, \exists \text{ poly-time } (1-\varepsilon)\text{-algorithm for the problem}$$
Online Scheduling

m machines n jobs arrive one-by-one

schedule decision must be made when a job arrives without seeing jobs in the future

List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$
assign job j to the current least heavily loaded machine;
Competitive Analysis

List Algorithm (Graham 1966)

For $j=1, 2, \ldots, n$
assign job j to the current least heavily loaded machine;

the **competitive ratio** of the online algorithm is α if:

\forall input sequence I:

- solution returned by the online algorithm on I
 - $\leq \alpha$

- solution returned by the optimal offline algorithm on I

the list algorithm is 2-competitive