Randomized Algorithms

南京大学
尹一通
Constraint Satisfaction Problem

- **variables**: $x_1, x_2, ..., x_n \in D$ (domain)
- **constraints**: $C_1, C_2, ..., C_m$
 - where $C_i(x_{i1}, x_{i2}, \ldots) \in \{true, false\}$
- **CSP solution**: an assignment of variables satisfying *all* constraints
- **examples**: SAT, graph colorability, ...
- **existence**: When does a solution exist?
- **search**: How to find a solution?
The Probabilistic Method

CSP C_1, C_2, \ldots, C_m defined on x_1, x_2, \ldots, x_n

- sampling random values of x_1, x_2, \ldots, x_n

- **Bad** event A_i: constraint C_i is violated

- None of the bad events occurs with prob: $\Pr\left[\bigwedge_{i=1}^{m} \overline{A_i} \right] > 0$

- The probabilistic method: being **good** is possible
Dependency Graph

events: \(A_1, A_2, \ldots, A_m \)
dependency graph: \(D(V,E) \)

\[
V = \{ 1, 2, \ldots, m \}
\]

\(ij \in E \iff A_i \text{ and } A_j \text{ are dependent} \)

d : max degree of dependency graph

\[
A_1(X_1, X_4) \\
A_2(X_1, X_2) \\
A_3(X_2, X_3) \\
A_4(X_4) \\
A_5(X_3)
\]

\(X_1, \ldots, X_4 \) mutually independent
events: \(A_1, A_2, \ldots, A_m \)

Each event is independent of all but at most \(d \) other events.

Lovász Local Lemma (symmetric)

- \(\forall i, \Pr[A_i] \leq p \)
- \(ep(d + 1) \leq 1 \)

\[
\Pr \left[\bigwedge_{i=1}^{m} \overline{A_i} \right] > 0
\]

Lovász Local Lemma (general)

- \(\exists \alpha_1, \ldots, \alpha_m \in [0, 1) \)
- \(\forall i, \Pr[A_i] \leq \alpha_i \prod_{j \sim i} (1 - \alpha_j) \)

\[
\Pr \left[\bigwedge_{i=1}^{m} \overline{A_i} \right] \geq \prod_{i=1}^{m} (1 - \alpha_i)
\]
k-SAT

- **n Boolean variables**: $x_1, x_2, \ldots, x_n \in \{\text{true, false}\}$
- **conjunctive normal form**:
 \[k\text{-CNF} \quad \phi = C_1 \land C_2 \land \cdots \land C_m \]

 “Is ϕ satisfiable?”

- **m clauses**: C_1, C_2, \ldots, C_m

- **each clause** $C_i = \ell_{i_1} \lor \ell_{i_2} \lor \cdots \lor \ell_{i_k}$
 is a disjunction of k **distinct** literals

- **each literal**: $\ell_j \in \{x_r, \neg x_r\}$ for some r

- **degree d**: each clause shares variables with at most d other clauses
Theorem

\[d \leq 2^{k-2} \rightarrow \exists \text{satisfying assignment for } \phi \]

uniform random assignment \(X_1, X_2, \ldots, X_n \) for clause \(C_i \), bad event \(A_i : C_i \text{ is not satisfied} \)

LLL: \(e(d + 1) \leq 2^k \rightarrow \Pr \left[\bigwedge_{i=1}^{n} \overline{A_i} \right] > 0 \)
Algorithmic *LLL*

\(\phi : k\text{-CNF of max degree } d \text{ with } m \text{ clauses on } n \text{ variables} \)

Theorem

\[d \leq 2^{k-2} \quad \exists \text{ satisfying assignment for } \phi \]

Theorem *(Moser, 2009)*

\[d < 2^{k-3} \quad \text{satisfying assignment can be found in } O(n + km \log m) \text{ w.h.p.} \]
\(\phi : k\text{-CNF of max degree } d \text{ with } m \text{ clauses on } n \text{ variables} \)

<table>
<thead>
<tr>
<th>Solve((\phi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>pick a random assignment (x_1, x_2, \ldots, x_n;)</td>
</tr>
<tr>
<td>while (\exists) unsatisfied clause (C)</td>
</tr>
<tr>
<td>(\textbf{Fix}(C);)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fix(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>replace variables in (C) with random values;</td>
</tr>
<tr>
<td>while (\exists) unsatisfied clause (D) overlapping with (C)</td>
</tr>
<tr>
<td>(\textbf{Fix}(D);)</td>
</tr>
</tbody>
</table>
\(\phi : k\text{-}CNF \) of max degree \(d \) with \(m \) clauses on \(n \) variables

Solve(\(\phi \))
- Pick a random assignment \(x_1, x_2, \ldots, x_n \);
- while \(\exists \) unsatisfied clause \(C \)
 - Fix(\(C \));

Fix(\(C \))
- replace variables in \(C \) with random values;
- while \(\exists \) unsatisfied clause \(D \) overlapping with \(C \)
 - Fix(\(D \));

at **top-level:**

Observation: A clause \(C \) is satisfied and will keep satisfied once it has been fixed.

\# of **top-level** calls to \(\text{Fix}(C) \) : \(\leq m \) (# of clauses)

total \# of calls to \(\text{Fix}(C) \) (including recursive calls) : \(t \)
\(\phi : k\text{-CNF of max degree } d \text{ with } m \text{ clauses on } n \text{ variables} \)

Solve(\(\phi \))
- Pick a random assignment \(x_1, x_2, \ldots, x_n \);
- while \(\exists \) unsatisfied clause \(C \)
 - Fix(\(C \));

Fix(\(C \))
- replace variables in \(C \) with random values;
- while \(\exists \) unsatisfied clause \(D \) overlapping with \(C \)
 - Fix(\(D \));

\[\leq m \text{ recursion trees} \quad \text{total # nodes: } t \]

total # of random bits: \(n + tk \) (assigned bits)

Observation: Fix(\(C \)) is called assignment of \(C \) is uniquely determined
\(\leq m \) recursion trees \quad total \# nodes: \(t \)

\[
\begin{array}{c}
\text{total \# of random bits: } n + tk \quad \text{(assigned bits)}
\end{array}
\]

the sequence of random bits is \textit{encoded to}:

final assignment: \(n \) bits

+ recursion trees: \(\leq m \lceil \log_2 m \rceil + t (\log_2 d + 3) \) bits

for each recursion tree:

root: \(\lceil \log_2 m \rceil \) bits

each internal node: \(\leq \log_2 d + \Theta(1) \) bits
Incompressibility Theorem (Kolmogorov)

\(N \) uniform random bits cannot be encoded to less than \(N - l \) bits with probability \(1 - O(2^{-l}). \)
\(\leq m \) recursion trees \hspace{1cm} \text{total # nodes: } t

total # of random bits: \(n + tk \) \hspace{1cm} \text{(assigned bits)}

the sequence of random bits is encoded to:

\[\leq n + m \lceil \log_2 m \rceil + t(\log_2 d + 3) \text{ bits} \]

\[t(k - 3 - \log_2 d) \leq m \lceil \log_2 m \rceil + \log n \text{ \hspace{1cm} whp} \]

when \(d < 2^{k-3} \)

\[t \leq \frac{m \lceil \log_2 m \rceil + \log n}{k - 3 - \log_2 d} \]

total running time: \(n + tk = O(n + km \log m) \)
Algorithmic LLL

$\phi :$ k-CNF of max degree d with m clauses on n variables

$$\phi = C_1 \land C_2 \land \cdots \land C_m$$

Theorem (Moser, 2009)

$$d < 2^{k-3}$$

satisfying assignment can be found in $O(n + km \log m)$ whp

Solve(ϕ)

Pick a random assignment x_1, x_2, \ldots, x_n;
while \exists unsatisfied clause C

Fix(C)

replace variables in C with random values;
while \exists unsatisfied clause D overlapping with C

Fix(D)
events: \(A_1, A_2, \ldots, A_m \)

each event is independent of all but at most \(d \) other events

Lovász Local Lemma (symmetric)

- \(\forall i, \ Pr[A_i] \leq p \)
- \(ep(d + 1) \leq 1 \)

\[
Pr \left[\bigwedge_{i=1}^{m} \overline{A_i} \right] > 0
\]

Lovász Local Lemma (general)

- \(\exists \alpha_1, \ldots, \alpha_m \in [0, 1) \)
- \(\forall i, \ Pr[A_i] \leq \alpha_i \prod_{j \sim i} (1 - \alpha_j) \)

\[
Pr \left[\bigwedge_{i=1}^{m} \overline{A_i} \right] \geq \prod_{i=1}^{m} (1 - \alpha_i)
\]
mutually independent random variables: \(X \in \mathcal{X} \)

bad events: \(A \in \mathcal{A} \) defined on variables in \(\mathcal{X} \)

\(\text{vbl}(A) \subseteq \mathcal{X} \): set of variables on which \(A \) is defined

neighborhood: \(\Gamma(A) = \{ B \in \mathcal{A} \mid B \neq A \text{ and } \text{vbl}(A) \cap \text{vbl}(B) \neq \emptyset \} \)

inclusive neighborhood: \(\Gamma^+(A) = \Gamma(A) \cup \{ A \} \)

“events that are dependent with \(A \), excluding/including \(A \) itself”

Lovász Local Lemma (general)

\[
\exists \alpha : \mathcal{A} \rightarrow [0, 1) \\
\forall A \in \mathcal{A} : \\
\Pr[A] \leq \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))
\]

\[
\Pr \left[\bigwedge_{A \in \mathcal{A}} \overline{A} \right] \geq \prod_{A \in \mathcal{A}} (1 - \alpha(A)) > 0
\]
mutually independent random variables: \(X \in \mathcal{X} \)

bad events: \(A \in \mathcal{A} \) defined on variables in \(\mathcal{X} \)

\(\text{vbl}(A) \subseteq \mathcal{X} \): set of variables on which \(A \) is defined

neighborhood: \(\Gamma(A) = \{ B \in \mathcal{A} \mid B \neq A \text{ and } \text{vbl}(A) \cap \text{vbl}(B) \neq \emptyset \} \)

inclusive neighborhood: \(\Gamma^+(A) = \Gamma(A) \cup \{ A \} \)

“events that are dependent with \(A \), excluding/including \(A \) itself”

\[
\exists \alpha : \mathcal{A} \rightarrow [0, 1) \\
\forall A \in \mathcal{A} : \\
\Pr[A] \leq \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))
\]

\(\exists \) values of variables in \(\mathcal{X} \) violating all events \(A \in \mathcal{A} \) simultaneously.
Algorithmic LLL

bad events $A \in \mathcal{A}$ defined on mutually independent random variables $X \in \mathcal{X}$

$vbl(A)$: set of variables on which A is defined

neighborhood $\Gamma(A)$ and inclusive neighborhood $\Gamma^+(A)$

Assumption:
I. We can efficiently sample an independent evaluation of every random variable $X \in \mathcal{X}$.

II. We can efficiently check the violation of every event $A \in \mathcal{A}$.

RandomSolver:
sample all $X \in \mathcal{X}$;
while \exists a non-violated bad event $A \in \mathcal{A}$:
 resample all $X \in vbl(A)$;
bad events $A \in \mathcal{A}$ defined on mutually independent random variables $X \in \mathcal{X}$

$vbl(A)$: set of variables on which A is defined

neighborhood $\Gamma(A)$ and inclusive neighborhood $\Gamma^+(A)$

RandomSolver: sample all $X \in \mathcal{X}$; while \exists a non-violated bad event $A \in \mathcal{A}$: resample all $X \in vbl(A)$;

Moser-Tardos 2010:

$\exists \alpha : \mathcal{A} \rightarrow [0, 1)$

$\forall A \in \mathcal{A}$:

$\Pr[A] \leq \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$

RandomSolver finds values of all $X \in \mathcal{X}$ violating all $A \in \mathcal{A}$ within expected $\sum_{A \in \mathcal{A}} \frac{\alpha(A)}{1 - \alpha(A)}$ resamples.
bad events $A \in \mathcal{A}$ defined on mutually independent random variables $X \in \mathcal{X}$

$vbl(A)$: set of variables on which A is defined

neighborhood $\Gamma(A)$ and inclusive neighborhood $\Gamma^+(A)$

RandomSolver:

sample all $X \in \mathcal{X}$;

while \exists a non-violated bad event $A \in \mathcal{A}$:

resample all $X \in vbl(A);$

Moser-Tardos 2010:

• $\forall A \in \mathcal{A}, \ Pr[A] \leq p$
• $ep(d + 1) \leq 1$

where $d = \max_A |\Gamma(A)|$

RandomSolver finds values of all $X \in \mathcal{X}$ violating all $A \in \mathcal{A}$ within expected $|\mathcal{A}|/d$ resamples.
\textbf{*k*-SAT} \\

\[\phi : k\text{-CNF of max degree } d \text{ with } m \text{ clauses on } n \text{ variables} \]

\textbf{RandomSolver:}

pick a random assignment \(x_1, x_2, \ldots , x_n \);
while \(\exists \) an unsatisfied clause \(C \):
replace variables in \(C \) with random values;

\[d \leq 2^{k-2} \quad (e(d+1) \leq 2^k) \]

RandomSolver returns a satisfying assignment within expected \(O(n + km/d) \) time
bad events $A \in \mathcal{A}$ defined on

mutually independent random variables $X \in \mathcal{X}$

$vbl(A)$: set of variables on which A is defined

neighborhood $\Gamma(A)$ and **inclusive** neighborhood $\Gamma^+(A)$

RandomSolver:

sample all $X \in \mathcal{X}$;

while \exists a non-violated bad event $A \in \mathcal{A}$:

resample all $X \in vbl(A)$;

Moser-Tardos 2010:

$$\exists \alpha : A \rightarrow [0, 1)$$

$$\forall A \in \mathcal{A} :$$

$$Pr[A] \leq \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$$

RandomSolver finds values of all $X \in \mathcal{X}$ violating all $A \in \mathcal{A}$ within expected resamples.

$$\sum_{A \in \mathcal{A}} \frac{\alpha(A)}{1 - \alpha(A)}$$
RandomSolver:
sample all $X \in \mathcal{X}$;
while \exists a non-violated $A \in \mathcal{A}$:
 resample all $X \in \text{vbl}(A)$;

$N_A = \left| \{ i \mid \Lambda_i = A \} \right|$

total # of times of A is resampled

execution log Λ:

$\Lambda_1, \Lambda_2, \Lambda_3,... \in \mathcal{A}$

random sequence of resampled events

Moser-Tardos 2010:

$\exists \alpha : A \rightarrow [0, 1)$

$\forall A \in \mathcal{A}$:

$\Pr[A] \leq \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$

$\forall A \in \mathcal{A}$:

$\mathbb{E}[N_A] \leq \frac{\alpha(A)}{1 - \alpha(A)}$
RandomSolver:

Sample all $X \in \mathcal{X}$;

While \exists a non-violated $A \in \mathcal{A}$:

Resample all $X \in \text{vbl}(A)$;

execution log Λ:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathcal{A}$$

Random sequence of resampled events

witness tree: A witness tree τ is a labeled tree in which every vertex v is labeled by an event $A_v \in \mathcal{A}$, such that siblings have distinct labels.

$T(\Lambda, t)$ is a witness tree constructed from exe-log Λ:

- Initially, T is a single root with label Λ_t
- For $i = t - 1, t - 2, \ldots, 1$
 - If \exists a vertex v in T with label $A_v \in \Gamma^{+}(\Lambda_i)$
 - Add a new child u to the deepest such v and label it with Λ_i
- $T(\Lambda, t)$ is the resulting T

$T(\Lambda, s) \neq T(\Lambda, t)$ for $s \neq t$

\mathcal{T}_A: Set of all witness trees with root-label A

$$\mathbb{E}[N_A] = \sum_{\tau \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = \tau]$$
RandomSolver:
sample all $X \in \mathcal{X}$;
while \exists a non-violated $A \in \mathcal{A}$:
 resample all $X \in \text{vbl}(A)$;

execution log Λ:

$$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathcal{A}$$

random sequence of resampled events

LLL hypothesis:

$$\exists \alpha : \mathcal{A} \rightarrow [0, 1)$$

$$\forall A \in \mathcal{A} : \quad \Pr[A] \leq \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$$

$$\mathbb{E}[N_A] = \sum_{\tau \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = \tau]$$

(lemma 1) \hspace{1cm} \leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \Pr[A_v]$$

(hypothesis of LLL) \hspace{1cm} \leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \left[\alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha(B)) \right]$$

(lemma 2) \hspace{1cm} \leq \frac{\alpha(A)}{1 - \alpha(A)}$$

$$N_A = |\{ i | \Lambda_i = A \}|$$

total # of times of A is resampled
execution log Λ:

$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathcal{A}$

random sequence of resampled events

$T(\Lambda, t)$ is a **witness tree** constructed from exe-log Λ:

- initially, T is a single root with label Λ_t
- for $i = t-1, t-2, \ldots, 1$
 - if there exists a vertex v in T with label $A_v \in \Gamma^+(\Lambda_i)$
 - add a new child u to the deepest such v and label it with Λ_i
- $T(\Lambda, t)$ is the resulting T

Lemma 1 For any particular witness tree τ:

$$\Pr[\exists t, T(\Lambda, t) = \tau] \leq \prod_{v \in \tau} \Pr[A_v]$$
grow a random witness tree $T_A \in \mathcal{T}_A$:

- initially, T_A is a single root with label A
- for $i = 1, 2, ...$
 - for every vertex v at depth i (root has depth 1) in T_A
 - for every $B \in \Gamma^+(A_v)$:
 - add a new child u to v independently with probability $\alpha(B)$;
 - and label it with B;
- stop if no new child added for an entire level

Lemma 2 For any particular witness tree $\tau \in \mathcal{T}_A$:

\[
\Pr[T_A = \tau] = \frac{1 - \alpha(A)}{\alpha(A)} \prod_{v \in \tau} \left[\alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha(B)) \right]
\]
RandomSolver:
sample all $X \in \mathcal{X}$;
while \exists a non-violated $A \in \mathcal{A}$:
 resample all $X \in \text{vbl}(A)$;

LLL hypothesis:
$\forall A \in \mathcal{A}: \Pr[A] \leq \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$

$E[N_A] = \sum_{\tau \in \mathcal{T}_A} \Pr[\exists t, T(\Lambda, t) = \tau]$

(lemma 1) $\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \Pr[A_v]$

(hypothesis of LLL) $\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in \tau} \left[\alpha(A_v) \prod_{B \in \Gamma(A_v)} (1 - \alpha(B)) \right]$

(lemma 2) $\leq \frac{\alpha(A)}{1 - \alpha(A)} \sum_{\tau \in \mathcal{T}_A} \Pr[T_A = \tau] \leq \frac{\alpha(A)}{1 - \alpha(A)}$

equation {execution log Λ:}
$\Lambda_1, \Lambda_2, \Lambda_3, \ldots \in \mathcal{A}$
random sequence of resampled events

total # of times of A is resampled
$N_A = |\{i \mid \Lambda_i = A\}|$
bad events $A \in \mathcal{A}$ defined on mutually independent random variables $X \in \mathcal{X}$

$vbl(A)$: set of variables on which A is defined

neighborhood $\Gamma(A)$ and inclusive neighborhood $\Gamma^+(A)$

$\textbf{RandomSolver:}$

sample all $X \in \mathcal{X}$;
while \exists a non-violated bad event $A \in \mathcal{A}$:
resample all $X \in vbl(A)$;

$\textbf{Moser-Tardos 2010:}$

$\exists \alpha : \mathcal{A} \rightarrow [0, 1)$
$\forall A \in \mathcal{A} :$
$\Pr[A] \leq \alpha(A) \prod_{B \in \Gamma(A)} (1 - \alpha(B))$

RandomSolver finds values of all $X \in \mathcal{X}$ violating all $A \in \mathcal{A}$ within expected resamples.