Combinatorics

南京大学
尹一通
Matching Theory
System of Distinct Representatives
(Transversal)

system of distinct representatives (SDR)

for sets \(S_1, S_2, \ldots, S_m \)

distinct \(x_1, x_2, \ldots, x_m \)

\(x_i \in S_i \)

for \(i = 1, 2, \ldots, m \)
Marriage Problem

Does there exist an SDR for S_1, S_2, \ldots, S_m?

m girls

$S_i :$ boys that girl i likes

“Is there a way of marrying these m girls?”
S_1, S_2, \ldots, S_m have a SDR

\exists distinct $x_1 \in S_1, x_2 \in S_2, \ldots, x_m \in S_m$

$\forall I \subseteq \{1, 2, \ldots, m\}$,

$$|\bigcup_{i \in I} S_i| \geq |\{x_i \mid i \in I\}| \geq |I|.$$
S_1, S_2, \ldots, S_m have a SDR $\forall I \subseteq \{1, 2, \ldots, m\}, \quad |\bigcup_{i \in I} S_i| \geq |I|.$
Hall’s Theorem (marriage theorem)

S_1, S_2, \ldots, S_m have a SDR if and only if

\[\forall I \subseteq \{1, 2, \ldots, m\}, \quad |\bigcup_{i \in I} S_i| \geq |I|. \]
Hall’s Theorem (graph theory form)
A bipartite graph \(G(U, V, E) \) has a matching of \(U \)
\[|N(S)| \geq |S| \text{ for all } S \subseteq U \]

matching: edge independent set
\(M \subseteq E \) with
\(\text{no } e_1, e_2 \in M \text{ share a vertex} \)
\[N(S) = \{ v \mid \exists u \in S, uv \in E \} \]
Hall’s Theorem (marriage theorem)
\[\forall I \subseteq \{1, 2, \ldots, m\}, \quad \left| \bigcup_{i \in I} S_i \right| \geq |I|. \]
\[\Rightarrow \quad S_1, S_2, \ldots, S_m \text{ have a SDR} \]

critical family: \(S_1, S_2, \ldots, S_k \quad k < m \)

\[
\left| \bigcup_{i=1}^{k} S_i \right| = k
\]

Induction on \(m \): \(m = 1, \) trivial

case. 1: there is no critical family in \(S_1, S_2, \ldots, S_m \)

case. 2: there is a critical family in \(S_1, S_2, \ldots, S_m \)
case 1: there is no critical family in S_1, S_2, \ldots, S_m

$\forall I \subseteq \{1, 2, \ldots, m\}$ that $|I| < m,$ $|\bigcup_{i \in I} S_i| > |I|$

take an arbitrary $x \in S_m$ as representative of S_m

remove S_m and x $S_i' = S_i \setminus \{x\}$ $i = 1, 2, \ldots, m-1$

$\forall I \subseteq \{1, 2, \ldots, m-1\},$ $|\bigcup_{i \in I} S_i'| \geq |I|$

due to I.H. S_1', \ldots, S_{m-1}' have a SDR $\{x_1, \ldots, x_{m-1}\}$

x_1, \ldots, x_{m-1} and x form a SDR for S_1, S_2, \ldots, S_m
Hall's Theorem (marriage theorem)
\[\forall I \subseteq \{1, 2, \ldots, m\}, \quad \left| \bigcup_{i \in I} S_i \right| \geq |I|. \]

\[S_1, S_2, \ldots, S_m \text{ have a SDR} \]

case.2: there is a critical family in \(S_1, S_2, \ldots, S_m \)
say \[|S_{m-k+1} \cup \cdots \cup S_m| = k \quad k < m \]
due to I.H. \(S_{m-k+1}, \ldots, S_m \) have a SDR \(X = \{x_1, \ldots, x_k\} \)

\[S_i' = S_i \setminus X \quad i = 1, 2, \ldots, m-k \]

\[\forall I \subseteq \{1, 2, \ldots, m-k\}, \quad \left| \bigcup_{i=m-k+1}^{m} S_i \cup \bigcup_{i \in I} S_i \right| \geq k + |I| \]

\[\Rightarrow \left| \bigcup_{i \in I} S'_i \right| \geq |I| \]
Hall’s Theorem (marriage theorem)
\[\forall I \subseteq \{1, 2, \ldots, m\}, \quad |\bigcup_{i \in I} S_i| \geq |I|. \]

\[S_1, S_2, \ldots, S_m \text{ have a SDR} \]

case.2: there is a critical family in \(S_1, S_2, \ldots, S_m \)
say \[|S_{m-k+1} \cup \cdots \cup S_m| = k \quad k < m \]
due to l.H. \(S_{m-k+1}, \ldots, S_m \) have a SDR \(X = \{x_1, \ldots, x_k\} \)
\[S_i' = S_i \setminus X \quad i = 1, 2, \ldots, m-k \]
\[\forall I \subseteq \{1, 2, \ldots, m-k\}, \quad \bigcup_{i \in I} S_i' \geq |I| \]
due to l.H.
\[S_1', \ldots, S_{m-k}' \text{ have a SDR} \quad Y = \{y_1, \ldots, y_{m-k}\} \]
\[X \text{ and } Y \text{ form a SDR for } S_1, S_2, \ldots, S_m \]
Hall’s Theorem (marriage theorem)

S_1, S_2, \ldots, S_m have a SDR if and only if

\[\forall I \subseteq \{1, 2, \ldots, m\}, \quad \left| \bigcup_{i \in I} S_i \right| \geq |I|. \]
Min-Max Theorems

• König-Egerváry theorem: in bipartite graph
 \(\min \) vertex cover = \(\max \) matching

• Menger’s theorem: in graph
 \(\min \) vertex-cut = \(\max \) vertex-disjoint paths

• Dilworth’s theorem: in poset
 \(\min \) chain-decomposition = \(\max \) antichain
König-Egerváry theorem

Theorem (König 1931, Egerváry 1931)

In a bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.

Matching: \(M \subseteq E \)

- no \(e_1, e_2 \in M \) share a vertex

Vertex Cover: \(C \subseteq V \)

- all \(e \in E \) adjacent to some \(v \in C \)
Theorem (König 1931, Egerváry 1931)

In a bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.

Matching:

- Independent 1s
- Do not share row/column
Theorem (König 1931, Egerváry 1931)

In a bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.
Theorem (König 1931, Egerváry 1931)

In a bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.

König-Egerváry Theorem *(matrix form)*

For any 0-1 matrix, the maximum number of independent 1's equals the minimum number of rows and columns required to cover all the 1's.
A: $m \times n$ 0-1 matrix
r: max # of independent 1’s
s: min # of rows/columns covering all 1’s

any r independent 1’s requires r rows/columns to cover
$A: m \times n$ 0-1 matrix

$r: \text{max \# of independent 1's}$

$s: \text{min \# of rows/columns covering all 1's}$

$r \geq s$

min covering: $s = a \text{ rows} + b \text{ columns}$

$A = \begin{bmatrix}
B_{a \times b} & C_{a \times (n-b)} \\
D_{(m-a) \times b} & 0
\end{bmatrix}$

$C \text{ has } a \text{ independent 1's}$

$D \text{ has } b \text{ independent 1's}$
A has min covering: $s = a$ rows + b columns

$A = \begin{bmatrix} B_{a \times b} & C_{a \times (n-b)} \\ D_{(m-a) \times b} & 0 \end{bmatrix}$

C has a independent 1’s

$S_i = \{ j \mid C_{ij} = 1 \}$

S_1, S_2, \ldots, S_a have a SDR

otherwise $\exists 1 \leq |I| \leq a, \quad |\bigcup_{i \in I} S_i| < |I|$ \hfill (Hall)

C can be covered by $(a - |I|)$ rows + $|\bigcup_{i \in I} S_i|$ columns
A has min covering: $s = a$ rows + b columns

$$A = \begin{bmatrix} B_{a \times b} & C_{a \times (n-b)} \\ D_{(m-a) \times b} & 0 \end{bmatrix}$$

C has a independent 1’s

$$S_i = \{ j \mid C_{ij} = 1 \}$$

S_1, S_2, \ldots, S_a have a SDR

otherwise $\exists 1 \leq |I| \leq a$, $|\bigcup_{i \in I} S_i| < |I|$ (Hall)

C can be covered by $< a$ rows&columns

A can be covered by $< a + b$ rows&columns

contradiction!
A has min covering: \(s = a \) rows + \(b \) columns

\[
A = \begin{bmatrix}
B_{a \times b} & C_{a \times (n-b)} \\
D_{(m-a) \times b} & 0
\end{bmatrix}
\]

\(C \) has \(a \) independent 1’s

\[
S_i = \{ j \mid C_{i,j} = 1 \}
\]

\(S_1, S_2, \ldots, S_a \) have a SDR

SDR: distinct \(j_1, j_2, \ldots, j_a \)

\(C(i, j_i) = 1 \)
$A : m \times n$ 0-1 matrix

$r : \text{max } \# \text{ of independent 1's}$

$s : \text{min } \# \text{ of rows/columns covering all 1's}$

$r \geq s$

A has min covering: $s = a \text{ rows } + b \text{ columns}$

$$A = \begin{bmatrix}
B_{a \times b} & C_{a \times (n-b)} \\
D_{(m-a) \times b} & 0
\end{bmatrix}$$

C has a independent 1's

D has b independent 1's
König-Egerváry Theorem (matrix form)

For any 0-1 matrix, the maximum number of independent 1's equals the minimum number of rows and columns required to cover all the 1's.

Theorem (König 1931, Egerváry 1931)

In a bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.
Chains and Antichains
\(\mathcal{F} \subseteq 2^{[n]} \) with \(\subseteq \) define a partially ordered set (poset)

reflexivity: \(A \subseteq A \)

antisymmetry:
\(A \subseteq B \) and \(B \subseteq A \) \(\Rightarrow \) \(A = B \)

transitivity:
\(A \subseteq B \) and \(B \subseteq C \) \(\Rightarrow \) \(A \subseteq C \)

chain:
\(A_1 \subseteq A_2 \subseteq \cdots \subseteq A_r \)

antichain:
\(A_1, A_2, \ldots, A_r \) that \(\forall A_i, A_j, \ A_i \nsubseteq A_j \)
Dilworth’s Theorem

Size of the largest antichain in the poset $P = \text{size of the smallest partition of } P \text{ into chains.}$
Dilworth’s Theorem

Size of the largest antichain in the poset $P = \text{size of the smallest partition of } P \text{ into chains.}$

Suppose: P has an antichain of size r.

P can be partitioned to s chains.

$$r \leq s$$

antichain A, chain C \quad |A \cap C| \leq 1

We only need to prove:

There exist an antichain $A \subseteq P$ of size r and a partition of P into r chains.
König-Egerváry Theorem:

\[\exists \text{ matching } M \text{ and vertex cover } C, \quad |M| = |C| = k \]

\(x \in P \) uncovered by \(C \) \quad \Rightarrow \quad \text{antichain} \quad \geq n-k

otherwise \quad \text{\(C \) is not a vertex cover}
poset P

$G(U,V,E)$

$U = V = P$

$uv \in E$ if $u < v$

\exists matching M and vertex cover C, $|M| = |C| = k$

\exists antichain of size $\geq n-k$

decompose P into chains:

u, v in the same chain if $uv \in M$

$\#$ chains $= \#$ unmatched vertices in $U = n-k$
Dilworth’s Theorem

Suppose that the largest antichain in the poset P has size r. Then P can be partitioned into r chains.

There exists an antichain $A \subseteq P$ and a partition of P into r chains such that $|A| = r$.

\exists antichain of size $\geq n-k = \# \text{ chains}$
Hall's Theorem (marriage theorem)
\[\forall I \subseteq \{1, 2, \ldots, m\}, \quad |\bigcup_{i \in I} S_i| \geq |I|. \]

\[S_1, S_2, \ldots, S_m \text{ have a SDR} \]

let \(X = S_1 \cup \cdots \cup S_m \)

poset \(P: \quad X \cup \{S_1, \ldots, S_m\} \)

\[x < S_i \quad \text{if} \quad x \in S_i \]

\(X \) is the largest antichain in \(P \).

\(A \subseteq P \) is an antichain \quad \(I = \{i \mid S_i \in A\} \quad S_I = \bigcup_{i \in I} S_i \)

\[A \cap S_I = \emptyset \quad \rightarrow \quad |A| \leq |I| + |X| - |S_I| \leq |X| \]

Hall condition
Hall’s Theorem (marriage theorem)
\[\forall I \subseteq \{1, 2, \ldots, m\}, \quad \left| \bigcup_{i \in I} S_i \right| \geq |I|. \]

\[S_1, S_2, \ldots, S_m \text{ have a SDR} \]

let \(X = S_1 \cup \cdots \cup S_m \)

poset \(P: \quad X \cup \{S_1, \ldots, S_m\} \)

\[x < S_i \text{ if } x \in S_i \]

\(X \) is the largest antichain in \(P \).

Dilworth: \(P \) is partitioned into \(n=|X| \) chains
\[\{S_1, x_1\}, \{S_2, x_2\}, \ldots, \{S_m, x_m\}, \{x_{m+1}\}, \ldots, \{x_n\} \]
Erdős-Szekeres Theorem

A sequence of \(> mn \) different numbers must contain either an increasing subsequence of length \(m+1 \), or a decreasing subsequence of length \(n+1 \).

\((a_1, \ldots, a_N)\) of \(N \) different numbers \(N > mn \)

poset \(P: \{ (i, a_i) \mid i = 1, 2, \ldots, N \} \)

\((i, a_i) \leq (j, a_j) \) if \(a_i \leq a_j \) and \(i \leq j \)

chain: increasing subseq
antichain: decreasing subseq

Use Dilworth!
Birkhoff - von Neumann Theorem
Every doubly stochastic matrix is a convex combination of permutation matrix.

doubly stochastic matrix A: $n \times n$ $A_{ij} \geq 0$

\[\forall j, \sum_i A_{ij} = 1 \quad \text{and} \quad \forall i, \sum_j A_{ij} = 1 \]

permutation matrix P: $P_{ij} \in \{0, 1\}$
every row/column has precisely one 1

convex combination:

\[A = \sum_{i=1}^{m} \lambda_i P_i \quad \lambda_i \geq 0 \quad \sum_{i=1}^{m} \lambda_i = 1 \]
\(n \times n \) nonnegative matrix \(A \):

\[
\forall j, \sum_{i} A_{ij} = \gamma \quad \forall i, \sum_{j} A_{ij} = \gamma \quad \gamma > 0
\]

\[
A = \sum_{i=1}^{m} \lambda_i P_i \quad \lambda_i \geq 0 \quad \sum_{i=1}^{m} \lambda_i = \gamma
\]

induction on \# of non-zeros in \(A \) \hspace{1cm} \text{denoted } m

\(\gamma > 0 \quad \Rightarrow \quad m \geq n \quad \text{Basis: } m=n \)

\(S_i = \{ j \mid A_{ij} > 0 \} \quad i = 1, 2, \ldots, n \)

If \(\exists I \subseteq \{1, \ldots, n\}, \left| \bigcup_{i \in I} S_i \right| < |I| \)

\[
< |I| \quad \text{sum by columns} < |I| \gamma \quad \text{contradiction!}
\]

\[
\sum_{i \in I} = |I| \gamma \quad \text{sum by rows}
\]
\(n \times n \) nonnegative matrix \(A \):

\[
\forall j, \sum_{i} A_{ij} = \gamma \quad \forall i, \sum_{j} A_{ij} = \gamma \quad \gamma > 0
\]

\[
A = \sum_{i=1}^{m} \lambda_i P_i \quad \lambda_i \geq 0 \quad \sum_{i=1}^{m} \lambda_i = \gamma
\]

induction on \# of non-zeros in \(A \) denoted \(m \)

\[
S_i = \{ j \mid A_{ij} > 0 \} \quad i = 1, 2, \ldots, n
\]

\[
\forall I \subseteq \{ 1, \ldots, n \}, \left| \bigcup_{i \in I} S_i \right| \geq |I|
\]

Hall’s Thm: \(\exists \) SDR \(j_1 \in S_1, \ldots, j_n \in S_n \)

permutation matrix \(P_m(i, j_i) = 1 \) otherwise \(= 0 \)

\[
\lambda_m = \min_{1 \leq i \leq n} A(i, j_i) \quad A' = A - \lambda_m P_m
\]

\[
\gamma' = \gamma - \lambda_m \quad m' \leq m - 1
\]
Birkhoff - von Neumann Theorem

Every doubly stochastic matrix is a convex combination of permutation matrix.

doubly stochastic matrix A: $n \times n$ $A_{ij} \geq 0$

$$\forall j, \sum_i A_{ij} = 1 \quad \text{and} \quad \forall i, \sum_j A_{ij} = 1$$

permutation matrix P: $P_{ij} \in \{0, 1\}$

every row/column has precisely one 1

convex combination:

$$A = \sum_{i=1}^{m} \lambda_i P_i \quad \lambda_i \geq 0 \quad \sum_{i=1}^{m} \lambda_i = 1$$