Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface
Zheng-Han Wang, Shang-Chi Jiang, Xiang Xiong, Ru-Wen Peng, and Mu Wang

View online: http://dx.doi.org/10.1063/1.4955034
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/108/26?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Polarization-selective optical transmission through a plasmonic metasurface

Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

A semiconductor metasurface with multiple functionalities: A polarizing beam splitter with simultaneous focusing ability

Complementary chiral metasurface with strong broadband optical activity and enhanced transmission

Bifrequency acousto-optic beam splitter
Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface

Zheng-Han Wang, Shang-Chi Jiang, Xiang Xiong, Ru-Wen Peng, and Mu Wang

National Laboratory of Solid State Microstructures and School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

(Received 4 April 2016; accepted 18 June 2016; published online 30 June 2016)

We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4955034]

A beam splitter changes an incident beam into two or more beams, and is an important optical component for quantum communication,1–5 quantum computation,6–9 optical interferometry,9–12 etc. Traditionally, there are a number of ways to construct a beam splitter. It can be made of a cube by two glass prisms glued together with transparent resin. An incident light beam can be partially reflected and partially transmitted at the glass–resin interface. The thickness of the resin layer is often used to adjust the power splitting ratio for a certain wavelength range. Besides, by using dielectric coating with different thicknesses, a dielectric mirror can be applied as a beam splitter with wide range of power splitting ratio. In addition, a layer of thin metal film can also realize simultaneous transmission and reflection with different power splitting ratio. In modern optics, beams with exactly identical intensity and exactly the same polarization status are often required in order to investigate some fundamental quantum phenomena, such as quantum superposition and quantum randomness.1–12 However, practically, equal-intensity beam splitting is not easy to realize. In particular, with traditional approach even though sometime equal-intensity beam splitting can be managed at a certain wavelength, a broadband functionality remains challenging.

The emergence of metasurface offers a unique approach to control the status of propagation of light beam.13–27 Electromagnetic metasurface consists of arrays of specially designed sub-wavelength building blocks on a surface, which interacts with light so strongly that the amplitude, phase, polarization, and propagation direction of light can be effectively tuned. On a metasurface, the phase gradient is generated mainly based on geometrical symmetry of the building block.18–27 Indeed by assembling rotating metallic split-rings20,21 or single bars,18,19,22,26 a geometry-induced phase gradient (sometime referred as Pancharatnam–Berry phase) is established, and circularly polarized beams with different handedness and different propagation directions are generated.20,22

In this letter we report a broadband optical beam-splitter based on the dispersion-free binary geometrical phase on a metasurface structure. The incident light with any polarization state can be split into two beams with exactly identical amplitude, phase, and polarization state yet with different propagation directions. This broadband optical beam splitter exhibits high energy utilization efficiency. The maximum efficiency of this device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm.

The building block of the equal-intensity optical beam splitter is made of a pair of parallel silver bars. The double-bars (DBS) pointing to 135° and 45° are denoted as DBS1 and DBS2, respectively. The silver structures sit on the SiO2-silver-bilayer-capped silicon substrate. Before investigating the properties of combination of DBS1 and DBS2, the optical feature of a metasurface made of DBS1 only is studied. Figure 1(a) illustrates the details of DBS1. The optical properties of DBS1 are calculated based on finite difference time domain (FDTD) method. The parameters related to silver are obtained from the Drude model \(\varepsilon (\omega) = 1 - \omega _{p}^{2} / (\omega ^{2} + i\omega \gamma) \), where \(\omega _{p} \) is the plasma frequency and \(\omega _{s} \) is the damping constant.

For silver, we take \(\omega _{p} = 1.37 \times 10^{16} \text{rad/s} \) and \(\omega _{s} = 2.73 \times 10^{13}\text{ s}^{-1} \).28,29 The refractive index of the SiO2 layer is taken as 1.45. The coordination is so set that the incident light propagates in \(-z \)-direction and the polarization is in \(y \)-direction. Due to the bottom silver reflection layer, the incident light cannot penetrate the substrate. \(R_{xy} \) and \(R_{yx} \) are defined as the intensity of \(y \)- and \(x \)-polarized reflected light with \(y \)-polarized normal incidence. When a linearly polarized incidence is reflected on an anisotropic structure, the polarization of the reflected light can be partly changed from its original direction to the orthogonal direction, which is known as the polarization conversion effect.23,27,30,31 In our system, the incident light is linearly polarized in \(x \)- or \(y \)-direction, and the polarization can be decomposed into two perpendicular components, along the long and the short axis of the resonator, respectively. The silver bars interact with the incident electric field, and the reflection amplitudes in the two perpendicular components are identical while the relative phase retardation is 180°. In this situation, the linear polarization conversion occurs when the incidence...
Therefore, once DBS1 and DBS2 are combined on the same bilayer-capped silicon substrate, where the thickness of SiO$_2$ by electron beam lithography (EBL) on a SiO$_2$-silver-(1000–1400 nm) for normal incidence.

Due to the symmetry of DBS1 and DBS2, when the incidence is x-polarized, the phase difference of y-polarized reflection from DBS1 and DBS2 also possesses a phase difference of π. The phase distribution along x-direction of the metasurface also possesses a binary distribution. Meanwhile application, no reflection along the axis of incidence beam is a preferred scenario.

Based on this idea, we design a metasurface with both DBS1 and DBS2, as shown in Fig. 2(a). The unit cell is made of two subsets, A and B. Subset A consists of three DBS1 while subset B consists of three DBS2. The lattice parameter of each building block is 500 nm, so the unit cell size in x-direction of the metasurface is 3000 nm. Suppose the incident light propagates in $-z$ and is y-polarized. We can first calculate the superposition of the y-polarized reflection light. Since the width of building block is smaller than the wavelength, the y-polarized light reflected by the building blocks can be treated as a plane wave propagating along $+z$ direction. Since both DBS1 and DBS2 have a large PCR, for y-polarized normal incidence, y-polarized reflection light is essentially zero.

Now we focus on the superposition of x-polarized reflections. The 180° phase difference between the x-polarized light reflected by DBS1 and DBS2 exists, and the phase distribution along x-direction of the metasurface forms a binary function as shown in Fig. 2(b). Due to the periodic structures on the surface, the reflection follows:

$$\sin \theta_m = \frac{m}{D} \lambda,$$

(1)

where θ_m is the reflection angle, λ is the wavelength, D is the unit cell size in x-direction (3000 nm in our case), and m is an integer. In Eq. (1), to fulfill the requirement $|\sin \theta_m| \leq 1$, and since wavelength λ is limited in the range of 1000–1400 nm, m should be taken as 0, $\pm 1, \pm 2$. Since the geometry offset between A and B is D/2, the difference of optical path between the light reflected by the two subsets in x_m direction is $D \sin \theta_m$. The total optical path difference is $D \sin \theta_m + \frac{\lambda}{2}$, where the $\frac{\lambda}{2}$ term is introduced by the binary phase distribution along x-direction. From Eq. (1) we get the difference of the optical path between A and B within a unit cell as $\frac{m+1}{2} \pi$. When m is even, the diffraction from A and B possesses a phase difference of π and hence vanishes. For normal reflection ($m = 0$), as we indicated earlier, a phase difference of π exists, so there will be no normal reflection. It follows that the allowed value of m can only be ± 1. Consequently, for y-polarized normal incidence, the reflection by the metasurface contains two identical beams ($m = \pm 1$), as shown in Fig. 2(c), where \bar{k}_{+1} and \bar{k}_{-1} represent the wave vectors of the x-polarized diffraction with m equals to $+1$ and -1 in x-z plane, respectively. In this way an equal-intensity beam splitter is realized for normal incidence.

The propagation direction θ is calculated from Eq. (1) as a function of wavelength, as shown in Fig. 2(d). Figure 2(e) shows the FDTD-simulated x-component of electric field distribution at 1000 nm. The wave fronts for diffraction $m = \pm 1$ propagate in $\theta = \pm 27.82^\circ$, which is in good agreement with Eq. (1).

Due to the symmetry of DBS1 and DBS2, when the incidence is x-polarized, the phase difference of y-polarized reflection from DBS1 and DBS2 also possesses a phase difference of π. The phase distribution along x-direction of the metasurface also possesses a binary distribution. Meanwhile
FIG. 2. (a) The micrograph of the unit cell of the metasurface, which consists of symmetric subsets, A and B. The normal incidence is y-polarized. The polarization of the reflected light is converted to x-polarization because of the building blocks. Due to the mirror symmetry of subsets A and B, the polarization of the reflected light has two directions, blue and red (left and right), respectively. (b) The phase difference of the x-polarized reflection light along the x-direction of the surface. (c) The schematic diagram of the angle-resolved setup to measure the normal reflectance of the oblique diffraction light, another CaF$_2$ lens (f = 80 mm), a polarizer, and a germanium photodiode detector are placed on a motorized rotation stage. Spectrum is measured by sweeping the rotation angle θ from -40° to 40°.

As illustrated in Fig. 3(c), for a y-polarized incidence propagating in $-z$-direction, both x- and y-polarized normal reflection (along $+z$-direction) is smaller than 5% when the wavelength is in the range of 1000–1400 nm.

For y-polarized normal incident light, the oblique reflection from the metasurface contains two identical beams with x-polarization, indicating that with monochromatic incidence, energy can only be detected in the direction θ_m with m = +1 and m = −1. With the angle-resolved vis-IR spectroscopy described above (Fig. 3(b)) we measure the spectra, as shown in Fig. 3(d). Two diffraction beams m = 1 and m = −1 are polarized within x-z plane, and their intensity are identical. The total intensity of these beams reaches 80% of the incidence at 1120 nm. The intensity of the diffracted beams at the other frequencies (wavelength 1000–1400 nm) is higher than 70% of the incident light in average. These data show that the metasurface indeed functions as a beam splitter with identical intensity and polarization state in a broad frequency range with high efficiency.

Excited by incident electromagnetic waves, free electrons on the metal surface oscillate and affect the surrounding electromagnetic field by radiation. At the resonant frequency, this effect is so significant that a thin layer of metallic structure can effectively tune the state of light. However, the Lorentz resonance in metal is highly dispersive in nature, which limits its application to a narrow wave band. On the other hand, dielectric material interacts with light by accumulating an optical path within a certain thickness. This feature is effective over a broad bandwidth and has already been applied in antireflection coating and other optical
devices. By integrating a metallic metastructure with a dielectric interlayer, the intrinsic dispersion of the metallic structures can be cancelled out by the thickness-dependent dispersion of the dielectric spacing layer. In this way, the large polarization conversion effect of our metastructure can be realized over a broad wavelength range. The double-bar metasurface structures provide better broadband feature than the single-bar metasurface.

To summarize, we demonstrate here the generation of equal-intensity coherent optical beams by binary geometrical phase on a metasurface. By introducing mirror-symmetric building blocks, a binary phase metasurface is realized. Since the binary phase does not rely on the optical property of building blocks, such a beam splitter is dispersion-free. The building block with large polarization conversion ratio enables the high efficiency of the binary phase metasurface. We have demonstrated that the efficiency of this device may reach 80% at 1120 nm and keeps higher than 70% in average in the range of 1000–1400 nm. Since equal-intensity beam splitters with dispersion-free feature can be widely used in generating entangled two photon light source for the quantum communication and in exploring some fundamental quantum phenomena, it is highly desired to develop equal-intensity coherent optical beam splitters with dispersion-free feature. Our current study provides a unique design to fulfill these requirements.

The authors acknowledge the grants from the State Key Program for Basic Research from MOST of China (Grant Nos. 2010CB630705 and 2012CB921502) and from NSF of China (Grant Nos. 11474157, 11574141 and 61475070).