The tame kernels of number fields

Xuejun Guo and Hourong Qin

Abstract. We review some progress on the tame kernels of number fields, especially on densities for certain sets of primes for which the \(p^n \)-rank of the tame kernel of certain related number fields has some fixed value.

1. Introduction

Let \(R \) be a ring. The definition of \(K_2 R \) was given by Milnor in 1967. For a field \(F \), Matsumoto proved in 1969 that \(K_2 F \) is the quotient of \(F^\times \otimes F^\times \) by the subgroup generated by the elements \(a \otimes (1 - a) \), where \(a \neq 0, 1 \). One can see [31] for details of a proof of Matsumoto’s Theorem.

Let \(F \) be a number field, \(\mathcal{O}_F \) the ring of integers of \(F \), \(r_1 \) the number of real places of \(F \), \(r_2 \) the number of complex places of \(F \). Let \(\text{Cl}(F) \) be the class group of \(\mathcal{O}_F \), and let \(\text{Cl}_2(F) \) be the subgroup of \(\text{Cl}(F) \) generated by classes containing prime ideals dividing 2. Bass proved in [1] and [2] that the following complex

\[
K_2 \mathcal{O}_F \longrightarrow K_2 F \xrightarrow{(\partial_p)} \bigoplus_p k_p^\times,
\]

is an exact sequence, where \(p \) runs through all finite primes of \(\mathcal{O}_F \) and \(k_p \) is the residue field \(\mathcal{O}_F / p \) and \((\partial_p) \) is the tame mapping. One can see Lemma 11.5 of [31] for the definition of the tame mapping. Hence \(K_2 \mathcal{O}_F \) is also called the tame kernel. Garland proved in [17] that \(K_2 \mathcal{O}_E \) is a finite abelian group. In [12], Coates related \(K_2 \) to some classical invariants of number fields. In 1976, Tate proved in [51] that if \(F \) contains a primitive \(l \)-th root of unity \(z \) and \(\Delta \) is the group of elements \(a \in F^\times \) such that \(\{ z, a \} = 1 \), then every element of \(iK_2 F \) is of form \(\{ z, b \} \) for some \(b \in F^\times \). Moreover, we have \((\Delta : (F^\times)^l) = l^{r_2 + 1} \). If \(F \) contains a primitive \(l \)-th root of unity, one can deduce the \(p \)-rank formula of \(K_2 \mathcal{O}_F \) from Tate’s theorem (cf. Corollary 3.9 of [27]).

In case of quadratic number fields, Browkin and Schinzel gave in [4] the explicit expression of the 2-torsion elements of \(K_2 \mathcal{O}_F \). In [8], one can find a table of tame and wild kernels of quadratic imaginary number fields whose discriminant \(D > -5000 \).
For any finite abelian group G, let r_{2^n} be the 2^n-rank of G, i.e.,

$$r_{2^n} = \log_2 |G^{2^n-1}/G^{2^n}|.$$

In 1992, Qin determined explicitly the structure of the 2-Sylow subgroup of $K_2 \mathcal{O}_F$ for some real quadratic number fields in his Ph.D. thesis. By this method, the 4-rank of $K_2 \mathcal{O}_F$ can be obtained by considering the Legendre symbols. Qin gave an efficient way to compute the 4-rank of $K_2 \mathcal{O}_F$ for arbitrary quadratic number fields in [39] and [40]. One can also find from [39] and [40] the explicit tables of the 4-ranks of tame kernels of $K_2 \mathcal{O}_F$, where the number of odd prime factors of d is less than or equal to 3. Comparing with the classical results of [46] and [47] on the 4-rank of class group of \mathcal{O}_F, one can find that the results in [39] and [40] in fact relates the 4-rank of $K_2 \mathcal{O}_F$ with the 4-rank of class group of \mathcal{O}_F. Since the density of 4-rank of class group of \mathcal{O}_F is already known in [15] and [14], we can get the density of the 4-rank of $K_2 \mathcal{O}_F$ by this method. If the number of prime factors of the discriminant is small, the density of 4-ranks can be found in [35], [36], [37] and [10]. Hurrelbrink and Kolster introduced in [26] a kind of sign matrices to compute $r_4(K_2 \mathcal{O}_F)$ for relative quadratic extensions, which is via the local Hilbert symbols. One can also see [13] for a similar sign matrix to compute $r_4(K_2 \mathcal{O}_F)$.

In [42], Qin described the method in [39] and [40] for calculating the 4-rank of the tame kernel of a quadratic number field by introducing sign matrices via Legendre symbols. Later in [55] and [56], Qin, Yin and Zhu exploited the same approach to determine the possible 4-ranks of the tame kernel for each type of quadratic fields. For each type they give a minimum and maximum possible value of r_4 and prove that the minimum, maximum and all intermediate values occur infinitely often.

In [41], Qin gave the necessary and sufficient conditions for an element of order two in $K_2 \mathcal{O}_F$ of a quadratic number field F to be a fourth power in $K_2 \mathcal{O}_F$. This result also gave an effective method to compute the 8-rank of $K_2 \mathcal{O}_F$ for any quadratic number field. One can find the table of the 8-rank of $K_2 \mathcal{O}_F$ for any quadratic number field whose discriminant has only one odd prime divisor in [41].

Later in [43], Qin gave an alternative expression of the main result of [41] on the 8-rank of $K_2 \mathcal{O}_F$ and give more application. The 8-ranks of $K_2 \mathcal{O}_F$ for all quadratic number fields whose discriminants have exactly two odd prime divisors are completely determined. And also the Tate kernel of any imaginary quadratic number field F with the 8-rank of $K_2 \mathcal{O}_F = 0$ has been given explicitly. If F is a real quadratic number fields and both -1 and -2 are not in $NF = \text{Norm}_{F/\mathbb{Q}}(F^\times)$, then the 16-rank of $K_2 \mathcal{O}_F$ is determined in some cases where the 8-rank of $K_2 \mathcal{O}_F \neq 0$.

If p is an odd prime, then the results on the p-Sylow subgroup of $K_2 \mathcal{O}_F$ are much less than that on the 2-Sylow subgroup of $K_2 \mathcal{O}_F$. One can see [6], [7], [9], [22], [27], [44] and [45] etc for results on the p-Sylow subgroup of $K_2 \mathcal{O}_F$. In [45], Qin established a reflection theorem for any odd prime p, which for $p = 3$ is Scholz Reflection Theorem, and gave some p^n-rank of $K_2 \mathcal{O}_F$ formulae.

We use the following notation: Let F be a number field with \mathcal{O}_F the ring of integers in F. For any integer n, $(K_2 \mathcal{O}_F)^n = \{ \alpha \in K_2 \mathcal{O}_F \mid \alpha = \beta^n \text{ for some } \beta \in K_2 \mathcal{O}_F \}$. For an integer $d \neq 0$, the set $S(d)$ is defined to be $\{ \pm 1, \pm 2 \}$ if $d > 0$ or $\{ 1, 2 \}$ if $d < 0$. For any abelian group A, let $2A = \{ \alpha \in A \mid \alpha^2 = 1 \}$. Let p be a prime and \mathbb{Q}_p the field of p-adic numbers. We shall use $\left(\frac{a, b}{p} \right)$ for the
Hilbert symbol with order 2 over \(\mathbb{Q}_p \), and \(v_p(\cdot) \) for the discrete valuation on \(\mathbb{Q}_p \).

The notation \((a, b) \equiv 1\) means that integers \(a\) and \(b\) have no common odd divisor.

2. The \(p \)-rank of \(K_2 \mathcal{O}_F \)

Let \(F \) be a number field, \(l \) a prime number, \(\mu_l \) the group of \(l \)-th roots of unity in the separable closure of \(F \), \(E = F(\mu_l) \), \(G = \text{Gal}(E/F) \). Then we have the following homomorphism:

\[
\tilde{\gamma} : \mu_l \otimes E^\times \rightarrow iK_2 E
\]

\[
z \otimes a \mapsto \{z, a\}, \text{ where } z \in \mu_l, a \in E^\times.
\]

If \(\tilde{\gamma} \) is restricted to \((\mu_l \otimes E^\times)^G\) the \(G \)-fixed subgroup of \(\mu_l \otimes E^\times \), then the image of \(\tilde{\gamma} \) is contained in the image of the natural map \(iK_2 E \rightarrow iK_2 \mathcal{E} \). Note that the degree of \(E/F \) is prime to \(l \). So \(iK_2 E \rightarrow iK_2 \mathcal{E} \) is injective. Hence we have a homomorphism

\[
\gamma : (\mu_l \otimes E^\times)^G \rightarrow iK_2 F.
\]

In 1976, Tate proved the following theorem.

Theorem 2.1 (Tate, [51]). With notations as above. Let \(r_2 \) be the number of complex places of \(F \). Let \(\varepsilon = 1 \) if \([F(\mu_l) : F] \leq 2\), and let \(\varepsilon = 0 \) otherwise. Then the map \(\gamma \) is surjective, and the kernel of \(\gamma \) is an elementary abelian group of order \(l^{r_2 + \varepsilon} \). In particular, if \(F \) contains a primitive \(l \)-th root of unity \(z \) and \(\Delta \) is the group of elements \(a \in F^\times \) such that \(\{z, a\} = 1 \), then every element of \(iK_2 F \) is of form \(\{z, b\} \) for some \(b \in F^\times \). Moreover, we have \((\Delta : (F^\times)^l) = l^{r_2 + 1} \).

The group \(\Delta \) in the above theorem is now called the Tate kernel of \(F \).

For a number field \(F \), let \(\text{Cl}(F) \) be its class group, and let \(\text{Cl}(F) \) be the subgroup of \(\text{Cl}(F) \) generated by classes containing prime ideals dividing \(l \). Let \(j_l = r_l(\text{Cl}(F)/\text{Cl}(F)) \) be the \(l \)-rank of \(\text{Cl}(F)/\text{Cl}(F) \). Let \(t_l \) be the number of finite places dividing \(l \).

By Tate’s Theorem, one can get the following Corollary.

Corollary 2.2 (Keune, [27]). Let \(l \) be a prime number. Suppose \(F \) contains a primitive \(l \)-th root of unity \(z \). Then we have the following formulae for \(p \)-rank

\[
r_p(K_2 \mathcal{O}_F) = j_l + t_l - 1, \text{ } (p \text{ odd})
\]

\[
r_2(K_2 \mathcal{O}_F) = j_2 + t_2 + r_1 - 1.
\]

Note that \(r_1 \) is the number of real places of \(F \).

Note that only in the above Corollary, \(r_2 \) denotes the 2-rank. While in other cases, \(r_2 \) always means the number of complex places of \(F \). The second formula of the above corollary was also proved earlier by Browkin in [5].

In case of quadratic number fields, Browkin and Schinzel proved in 1982 the following theorem. Recall that \(NF = \text{Norm}_{F/\mathbb{Q}}(F^\times) \).

Theorem 2.3 (Browkin and Schinzel, [4]). Let \(F = \mathbb{Q}(\sqrt{d}) \) be a quadratic number field, where \(d \) is a square free integer. Then \(2K_2 \mathcal{O}_F \) can be generated by \((-1, m) \), \(m \mid d \), together with \((-1, u_i + \sqrt{d}) \) if \((-1, \pm 2) \cap NF \neq \emptyset \), where \(u_i \in \mathbb{Z} \) such that \(d = u_i^2 - c_i u_i^2 \) for some \(w_i \in \mathbb{Z} \) and \(c_i \in \{-1, \pm 2\} \cap NF \).

In 1985, by applying the odd part of Birch-Tate Conjecture, which follows from the Main Conjecture proved by Mazur-Wiles, Browkin obtained that
Theorem 2.4 (Browkin, [6]). If $d > 0$ is the discriminant of the field $F = \mathbb{Q}(\sqrt{d})$, then $3|\# K_2 \mathcal{O}_F$ if and only if the class number of the field $\mathbb{Q}(\sqrt{-3d})$ is divisible by 3.

For general results on the p-primary part of the tame kernel of number fields, one can see [51] and [27]. Based on his numerical computations, Gangl proposed in [16] some conjectures, which in the case $p = 3$, relate the divisibility of order of the tame kernel of imaginary quadratic number fields by 3 or 9 to the divisibility of class numbers of the same imaginary quadratic number fields by 3. Assuming Lichtenbaum’s conjecture, Browkin and Gangl gave a list of structures of the tame kernels and the wild kernels of imaginary quadratic number fields with discriminants larger than -5000 in [8].

In 1992, Browkin studied the p-rank of the tame kernels of quadratic number fields by the reflection theorem in [7]. He proved two of Gangl’s conjectures in [16].

Theorem 2.5 (Browkin, [7]). Let d be a negative square free integer, $F = \mathbb{Q}(\sqrt{d})$. Then

1. $3|\# K_2 \mathcal{O}_F$ implies $3|\# \text{Cl}(F)$, for $d \not\equiv 3 \pmod{9}$.
2. $5|\# K_2 \mathcal{O}_F$ implies $5|\# \text{Cl}(\mathbb{Q}(\sqrt{5d}))$.

The remaining part of Gangl’s conjectures is proved by Guo and Qin ([22], using the logarithmic class group), Qin ([45], using the reflection theorems, class field theory and some new formulae for the p-rank of tame kernels). More precisely, we proved that

Theorem 2.6 ([22], [45]). If 9 divides the cardinality of $K_2 \mathcal{O}_{\mathbb{Q}(\sqrt{-9k-3})}$, then 3 divides the class number of $\mathbb{Q}(\sqrt{-9k-3})$, where k is a positive integer and $3k+1$ is square free.

What was proved in [41] is quite general. More precisely, for any odd prime p, we consider the p-divisibility and also the p^n-divisibility of the order of $K_2 \mathcal{O}_F$. The result gives a general picture of the special phenomenon for prime 3 observed by Gangl.

In [9], Browkin developed some ideas for estimating the tame kernels of cyclic cubic fields. Wu extended in [54] the methods of Browkin to cyclic quintic fields. In [11], Cheng proved that for a fixed positive integer m there exist infinitely many pure cubic fields whose 3-rank of the tame kernel equal to m. In [29], Li and Qin proved the following density result on the tame kernels of the pure cubic number fields.

Theorem 2.7 (Li and Qin, [29]). Let $X_{11} = \{m : m = p_1 p_2, p_1 \equiv 1 \mod{3}, p_2 \equiv 1 \mod{3}, p_1 p_2 \not\equiv \pm 1 \mod{9}, \left(\frac{p_2}{p_1}\right)_3 = 1\}$

and

$X_{12} = \{m : m = p_1 p_2, p_1 \equiv 1 \mod{3}, p_2 \equiv 2 \mod{3}, p_1 p_2 \not\equiv \pm 1 \mod{9}, \left(\frac{p_2}{p_1}\right)_3 = 1\}$.

Then for the fields \(\mathbb{Q}(\sqrt[3]{p_1 p_2}) \), 3-rank 2 and 1 each appear with density \(\frac{1}{3} \) and \(\frac{2}{3} \) respectively in \(X_{12} \). And for the fields \(\mathbb{Q}(\sqrt[3]{p_1 p_2}) \), 3-rank 3, 2, and 1 each appear with density \(\frac{1}{27}, \frac{14}{27}, \) and \(\frac{4}{9} \) respectively in \(X_{11} \).

3. The 4-rank of \(K_2 \mathcal{O}_F \)

Since by Theorem 2.3, \(\{-1, m\} \) and \(\{-1, m(u + \sqrt{d})\} \) (if \(2 \in \text{NF} \)) are the generators of \(K_2 \mathcal{O}_F \). The following theorem determines the 4-rank of \(K_2 \mathcal{O}_F \) for arbitrary quadratic number fields.

Theorem 3.1 (Qin). Let \(F = \mathbb{Q}(\sqrt{d}), d \in \mathbb{Z} \) square-free. Suppose that \(m \mid d \) \((m > 0 \text{ if } d > 0)\) and write \(d = u^2 - 2w^2 \) with \(u, w \in \mathbb{Z} \) (we take \(u > 0 \) if \(d > 0 \)) if \(2 \in \text{NF} \). Then \(\{-1, m\} \in K_2 \mathcal{O}_F^2 \) if and only if one can find an \(\varepsilon \in S(d) \) such that for any odd prime \(p \mid d \),

\[
\left(\frac{-d, m}{p} \right) = \left(\frac{\varepsilon}{p} \right),
\]

and \(\{-1, m(u + \sqrt{d})\} \in K_2 \mathcal{O}_F^2 \) if and only if one can find a \(\delta \in S(d) \) such that for any odd prime \(p \mid d \),

\[
\left(\frac{-d, m}{p} \right) = \left(\frac{\delta(u + w)}{p} \right).
\]

The above theorem was proved in [39] and [40] and this version was presented in [43]. In [38], [39] and [40], Qin gave tables of the 4-ranks of tame kernels of \(K_2 \mathcal{O}_F \), where the number of odd prime factors of \(d \) is less than or equal to 3.

By Theorem 3.1, one can relate the 4-rank of \(K_2 \mathcal{O}_F \) with the 4-rank of the class group of \(\mathcal{O}_F \). See [3] and [57] for such relations. Since the density of 4-rank of class group of \(\mathcal{O}_F \) is already known, we can get the density of the 4-rank of \(K_2 \mathcal{O}_F \) (one can see [57], [58] and [20] for details).

Let \(D \) be a fundamental discriminant, i.e., the discriminant of some quadratic number field. Let

\[
g_r(D) = \begin{cases}
1, & \text{if } r(4K_2 \mathcal{O}_{\mathbb{Q}(\sqrt{D})}) = r; \\
0, & \text{otherwise.}
\end{cases}
\]

Then the density of real quadratic number fields \(F \) with \(r(4K_2 \mathcal{O}_F) = r \), in the set of all real quadratic number fields is

\[
d_r^+ = \lim_{x \to \infty} \frac{\sum_{0 < D < x} g_r(D)}{\sum_{0 < D < x} 1}.
\]

And the density of imaginary quadratic number fields \(E \) with \(r(4K_2 \mathcal{O}_E) = r \) in the set of all imaginary quadratic number fields is

\[
d_r^- = \lim_{x \to \infty} \frac{\sum_{0 < -D < x} g_r(D)}{\sum_{0 < -D < x} 1}.
\]
Theorem 3.2 (Guo, [20]). Let \(r \) be an integer. Then
\[
d_{0}^{+} = 0; \\
d_{r}^{+} = \frac{2^{-r(r-1)} \prod_{k=1}^{\infty} (1 - 2^{-k})}{(1 - 2^{-r}) \prod_{k=1}^{r-1} (1 - 2^{-k})^2}, \quad \text{if } r \geq 1; \\
d_{r}^{-} = 2^{-r^2} \cdot \frac{\prod_{k=1}^{\infty} (1 - 2^{-k})}{\prod_{k=1}^{r} (1 - 2^{-k})^2}, \quad \text{if } r \geq 0.
\]

If the number of prime factors of the discriminant is small, the density of 4-ranks can be found in [35], [36], [37] and [10].

Osburn proved the following theorems.

Theorem 3.3 (Osburn, [35]). Let \(p \equiv 7 \mod 8 \) be a fixed prime and let
\[
\Omega = \{ l \text{ rational prime} | l \equiv 1 \mod 8 \text{ and } \left(\frac{l}{p} \right) = 1 \}.
\]

Then for the fields \(\mathbb{Q}(\sqrt{pl}) \) and \(\mathbb{Q}(\sqrt{2pl}) \), 4-rank 1 and 2 each appear with natural density 1/2 in \(\Omega \). For the fields \(\mathbb{Q}(\sqrt{-pl}) \) and \(\mathbb{Q}(\sqrt{-2pl}) \), 4-rank 0 and 1 each appear with natural density 1/2 in \(\Omega \).

Theorem 3.4 (Osburn, [36]). Let \(p \) be a fixed prime and let
\[
A_p = \{ l \text{ rational prime} | l \equiv 1 \mod 8 \text{ and } \left(\frac{l}{p} \right) = 1 \}
\]
\[
B_p = \{ l \text{ rational prime} | l \equiv 1 \mod 8 \text{ and } \left(\frac{l}{p} \right) = -1 \}.
\]

If \(p \equiv 1 \mod 8 \), then for the fields \(\mathbb{Q}(\sqrt{pl}) \), 4-rank 1 and 2 each appear with natural density 3/4 and 1/4 in \(A \). For the fields \(\mathbb{Q}(\sqrt{-pl}) \), 4-rank 1 and 2 each appear with natural density 1/2 in \(A \). For the fields \(\mathbb{Q}(\sqrt{pl}) \), 4-rank 0 and 1 each appear with natural density 1/2 in \(B \).

Later Cheng proved the following.

Theorem 3.5 (Cheng, [10]). Let \(A_p \) and \(B_p \) be the same as in the above theorem. Then

1. Assume \(p \equiv 1 \mod 8 \). Then for real quadratic number field \(\mathbb{Q}(\sqrt{2pl}) \), 4-rank 1 and 2 each appear with natural density \(\frac{3}{4} \) and \(\frac{1}{4} \) in \(A_p \). For the imaginary number field \(\mathbb{Q}(\sqrt{-2pl}) \), 4-rank 1 and 2 each appear with natural density \(\frac{3}{4} \) and \(\frac{1}{4} \) in \(A_p \).

2. Assume \(p \equiv 7 \mod 8 \). Then for the imaginary number field \(\mathbb{Q}(\sqrt{-2pl}) \), 4-rank 0 and 1 each appear with natural density \(\frac{1}{2} \) in \(A_p \). For the imaginary number field \(\mathbb{Q}(\sqrt{-2pl}) \), 4-rank 0 and 1 each appear with natural density \(\frac{1}{2} \) in \(B_p \).

Theorem 3.6 (Osburn, [37]). Let
\[
X = \{ d | d = p_1 p_2 p_3, \ p_i \equiv 1 \mod 8 \},
\]
where \(p_i \) are distinct rational primes. Then for the fields \(\mathbb{Q}(\sqrt{p_1p_2p_3}) \), 4-rank 0, 1, 2 and 3 each appear with natural density \(\frac{1}{4}, \frac{17}{64}, \frac{13}{64} \) and \(\frac{1}{64} \) in \(X \).

Theorem 3.1 gives an efficient method to compute the 4-rank of \(K_2\mathcal{O}_F \). In [42], Qin explained this method via the sign matrices. Let \(d \in \mathbb{N} \) square-free and let \(d = 2^\sigma p_1 \ldots p_n \) be the prime factorization, where \(\sigma = 0 \) or 1. For \(j = 1, 3, 5, 7 \) we let \(m_j \) denote the number of \(p_i \)'s which are \(\equiv j \mod 8 \), and we call \(2^\sigma (m_1, m_3, m_5, m_7) \) the type of \(d \). The results of [42] are expressed in terms of the type of the square free integer \(d \). In the real quadratic case, Qin characterizes those types for which the 4-rank of the tame kernel is always positive and shows that for each other type there exists both a set of \(d \) of positive density for which the 4-rank is 0 and a set of \(d \) of positive density for which the 4-rank is positive. Similar results were proved for the imaginary quadratic number fields.

Later in [55], Qin, Yin and Zhu exploited the same method to determine the possible 4-ranks of the tame kernel for each type of real quadratic field. For each type they gave the minimum and maximum possible value of \(r_4 \) and prove (modulo a plausible technical assumption in a few cases) that all intermediate values occur infinitely often. In [56], Qin, Yin and Zhu applied this method to prove that the similar assertion holds for imaginary quadratic fields \(F \).

Let \(d \) be a square free integer, \(D \) the discriminant of \(\mathbb{Q}(\sqrt{d}) \). It is natural to raise the following conjecture.

Conjecture 3.7 Let \(\sigma = 0 \) or 1, \(m_1, m_3, m_5, m_7 \) fixed non negative integers. Let \(T_+ = \{ D | 0 < D < x, \text{ and the type of } d = 2^\sigma (m_1, m_3, m_5, m_7) \} \). Let \(r_{\text{min}} \) and \(r_{\text{max}} \) be the minimum and maximum possible value of \(r_4 \) corresponding to the type, which were given in [42]. Then the density of real quadratic number fields \(F \) with \(r_4(K_2\mathcal{O}_F) = r \), \(r_{\text{min}} \leq r \leq r_{\text{max}} \), in the set of all real quadratic number fields of type \(2^\sigma (m_1, m_3, m_5, m_7) \)

\[
d^+_{r_4}(2^\sigma (m_1, m_3, m_5, m_7)) := \lim_{x \to \infty} \frac{\sum_{D \in T_+} g_r(D)}{\sum_{D \in T_+} 1}
\]

is positive. The similar assertion holds also for imaginary quadratic fields.

4. The 8-rank of \(K_2\mathcal{O}_F \)

Let \(F = \mathbb{Q}(\sqrt{d}) \) be a quadratic field, where \(d \in \mathbb{Z} \) is square-free. Recall from [2] that \(2K_2\mathcal{O}_F \) can be written as the forms \{\(-1, m\), \(m \mid d \); together with \{-1, \(m(u_i + \sqrt{d}) \), if \{-1, \pm 2\} \cap NF \neq \emptyset \), where \(u_i \in \mathbb{Z} \) such that \(u_i^2 - d = c_i w_i^2 \) for some \(w_i \in \mathbb{Z} \) and \(c_i \in \{-1, \pm 2\} \cap NF \).

If \(u_i^2 - d = -w_i^2 \) or \(-2w_i^2 \), then \{-1, \(m(u_i + \sqrt{d}) \) \(\notin (K_2\mathcal{O}_F)^4 \.

On the other hand, we know that a necessary condition for \{-1, \(m \) \(\in (K_2\mathcal{O}_F)^4 \) is that there is an \(\epsilon \in \{1, 2\} \) such that

\[
(4.1) \quad \epsilon mZ^2 = X^2 + dY^2
\]
is solvable. And a necessary condition for \{-1, \(m(u + \sqrt{d}) \) \(\in (K_2\mathcal{O}_F)^4 \) is that

\[
(4.2) \quad m(u + w)Z^2 = X^2 + dY^2
\]
is solvable.
For a square-free integer d and $i = 1, 3, 5, 7$, denote by d_i the product of all prime divisors of d which are $\equiv i \pmod{8}$ ($d_i = 1$ if d has no prime divisor $\equiv i \pmod{8}$).

We let $\sigma(l) = 1$ or 0 according to $l \mid m_3$ or not. In view of Theorem 3.1, the following theorem determines the 8-rank of $K_3 \mathcal{O}_F$ for arbitrary quadratic number fields completely.

Theorem 4.1 (Qin, [41], [43]). Let d be a square-free integer and $F = \mathbb{Q}(\sqrt{d})$, and let $m \mid d$. Write $m = \pm m_1 m_3 m_5 m_7$ with $m_i \mid d_i$ for $i = 1, 3, 5, 7$. Assume that (4.1) is solvable and let $X_m, Y_m, Z_m \in \mathbb{N}$ with $(X_m, Y_m) = 1$ and $(Z_m, d)^2 \equiv 1$ is a solution of (4.1).

(A) Suppose that $2 \notin NF$. Then $\{-1, m\} \in (K_3 \mathcal{O}_F)^4$ if and only if for $i = 1, 3, 5, 7$, there are $h_i \mid d_i$, in particular, $h_i = 1$ is permitted, and $\varepsilon \in \{ \pm 1, \pm 2 \}$ such that for any odd prime $l \mid d$,

$$\left(\frac{d, m_3 h_1 h_5}{l} \right) \left(\frac{-2^{\sigma(l)} d, m_5 h_3 h_7}{l} \right) = \left(\frac{\varepsilon Z_m}{l} \right).$$

(B) Suppose that $2 \in NF$.

(i) Then $\{-1, m\} \in (K_3 \mathcal{O}_F)^4$ if and only if for $i = 1, 3, 5, 7$, there are $h_i \mid d_i$ ($h_i = 1$ is permitted) and $\delta \in \{ \pm 1 \}$ such that for any odd prime $l \mid d$,

$$\left(\frac{d, h_1}{l} \right) \left(\frac{-d, h_7}{l} \right) = \left(\frac{\delta Z_m}{l} \right),$$

or

$$\left(\frac{d, h_1}{l} \right) \left(\frac{-d, h_7}{l} \right) = \left(\frac{(\delta u + w)Z_m}{l} \right).$$

(ii) Assume that (4.2) is solvable and let $X_{mv}, Y_{mv}, Z_{mv} \in \mathbb{N}$ with $h = Y_{mv}, g = \frac{X_{mv} - wY_{mv}}{u + w} \in \mathbb{Z}$, $(g, h) = 1$ and $(Z_{mv}, dw) = 1$ be a solution. Then $\{-1, m(u + \sqrt{d})\} \in (K_3 \mathcal{O}_F)^4$ if and only if for $i = 1, 3, 5, 7$, there are $h_i \mid d_i$ ($h_i = 1$ is permitted) and $\eta \in \{ \pm 1 \}$ such that for any odd prime $l \mid d$,

$$\left(\frac{d, h_1}{l} \right) \left(\frac{-d, h_7}{l} \right) = \left(\frac{\eta u Z_{mv}}{l} \right),$$

or

$$\left(\frac{d, h_1}{l} \right) \left(\frac{-d, h_7}{l} \right) = \left(\frac{\eta (u + w) u Z_{mv}}{l} \right).$$

By Theorem 4.1, in order to compute the 8-rank of $K_3 \mathcal{O}_F$, one needs to solve some Diophantine equations. There are 2^{r_4+1} (resp., at most 2^{r_4}) such equations in the imaginary (resp., real) case. The following theorem permits us to consider only $r_4 + 1$ (resp., at most r_1) equations in the imaginary (resp., real) case.

Theorem 4.2 (Qin, [43]). Let d be a square-free integer and $m \mid d, n \mid d$. And let $(m, n) = c$. Suppose that there are $\epsilon_m, \epsilon_n \in \{ 1, 2 \}$ such that $\epsilon_m mZ^2 = X^2 + dY^2$ and $\epsilon_n nZ^2 = X^2 + dY^2$ are solvable. Then $\epsilon_m \epsilon_n (m^n + c) Z^2 = X^2 + dY^2$ is solvable and we can choose solutions of these equations such that $Z_m, Z_n, Z_{mn/c^2}$ satisfy the assumption of Theorem 4.1 and for any odd prime $p \mid d$,

$$\left(\frac{Z_m}{p} \right) \left(\frac{Z_n}{p} \right) = \left(\frac{\varepsilon Z_{mn/c^2}}{p} \right).$$
for some $\varepsilon = 1$ or 2.

Suppose that $2 \in N\mathbb{Q}(\sqrt{d})$ and $r \mid d$. Suppose that $n(u + w)Z^2 = X^2 + dY^2$ and $r(u + w)Z^2 = X^2 + dY^2$ are solvable. Then $nr/(n + r)^2(u + w)Z^2 = X^2 + dY^2$ is solvable and we can choose solutions of these equations such that $Z_m, Z_{nv}, Z_{mn/c^2v}$ satisfy the assumption of Theorem 4.1 and for any odd prime

$$
\left(\frac{Z_m}{p} \right) \left(\frac{Z_{nv}}{p} \right) = \left(\frac{T_{mn/c^2v}}{p} \right)
$$

for some $\delta = 1$ or 2 and

$$
\left(\frac{Z_{nv}}{p} \right) \left(\frac{Z_{rw}}{p} \right) = \left(\frac{\eta_{nr/(n + r)^2}}{p} \right)
$$

for some $\eta = 1$ or 2.

If the number of odd prime factors of the discriminant of quadratic number field F is less than 2, then 2^n-rank ($n \leq 3$) of $K_2\mathcal{O}_F$ is explicitly given in [38], [39], [40], [41], [42], [43]. In some cases, even the 2^k-rank of $K_2\mathcal{O}_F$ is explicitly given.

In general case, Qin proposed the following Conjecture in [43].

Conjecture 4.2: Let $k \geq 2$ and $n \in \mathbb{N}$. Given $k - 1$ integers $r_4, r_8, ..., r_{2k}$ satisfying

$$
n \geq r_4 \geq r_8 \geq \cdots \geq r_{2k} \geq 0.
$$

Then there exist infinitely many quadratic number fields $F = \mathbb{Q}(\sqrt{d})$ such that $d > 0$ is square-free has exactly n prime divisors, any of which $\equiv 1 \pmod{8}$ and the 2^j-rank of $K_2\mathcal{O}_F = r_2k \geq 2$ ($2 \leq j \leq k$).

The same assertion should be true for $F = \mathbb{Q}(\sqrt{d})$ with $d = -d'$ or $d = 2d'$ or $d = -2d'$, where d' has exactly n prime divisors, any of which $\equiv 1 \pmod{8}$.

In [42], Qin proved that above conjecture is true for $k = 2$ and $n - 1 \geq r_4 \geq 0$. With some assumption, it is also proved that the Conjecture is true for $k = 2$.

In [21], we proved the following theorem.

Theorem 4.3. For any finite abelian group G of exponent 8, there are infinitely many imaginary quadratic fields E such that

$$K_2\mathcal{O}_E/(K_2\mathcal{O}_E)^G \cong G;
$$

and for any finite abelian group H of exponent 8 with $rk_2H \geq 2 + rk_4H$, there are infinitely many real quadratic fields F such that

$$K_2\mathcal{O}_F/(K_2\mathcal{O}_F)^G \cong H.
$$

This result can be seen as the K_2-analogue of Morton and Stevenhagen’s result in [32], [33], [34] and [49].

References

[34] P. Morton, Density results for the 2-classgroups and fundamental units of real quadratic fields, Studia Scientiarum Mathematicarum Hungarica 17 (1982), 21–43.
