
Advanced Algorithms

�9�ß�}�×��

�Š�I�`

Markov Chain
¥stochastic process: X0, X1, X2, …

Xt ! Ω

¥Markov property (memoryless):

X t+1 depends only onXt

Pr[Xt +1 = y | X0 = x0, . . . , Xt ! 1 = xt ! 1, Xt = x]

=Pr[Xt +1 = y | Xt = x]

Markov chain : discrete time discrete space
stochastic process with Markov property.

time

state space

Transition Matrix
¥Markov chain: X0, X1, X2, … ! Ω

Pr[Xt +1 = y | X0 = x0, . . . , Xt ! 1 = xt ! 1, Xt = x]

=Pr[Xt +1 = y | Xt = x] = P(t)
xy = P

xy

(time-homogenous)

¥transition matrix P over Ω × Ω

(row-)stochastic matrix: P1=1

¥homogeneity: transition does not depend on time

Pr[X
t+1 = y] =

!

x! ⌦

Pr[X
t+1 = y | X

t

= x] Pr[X
t

= x]

Transition Matrix
¥Markov chain:

¥transition matrix P over Ω × Ω

p

(t) (x) = Pr[Xt = x]distribution

P(x, y) = Pr[X t +1 = y | X t = x]

p(t +1) = p(t) P

p(0) P!" p(1) P!" · · · · · · P!" p(t) P!" · · ·
initial !

distribution
distribution!

of Xt

X0, X1, X2, … ! ΩM = (! , P)

1/ 3

1/ 3

1/ 3

1/ 3

2/ 3

1

1
2

3

P =

!

"
0 1 0

1/ 3 0 2/ 3
1/ 3 1/ 3 1/ 3

#

$

Convergence

P =

!

"
0 1 0

1/ 3 0 2/ 3
1/ 3 1/ 3 1/ 3

#

$
1/ 3

1/ 3

1/ 3

1/ 3

2/ 3

1

1
2

3

P20 !

!

"
0.2500 0.3750 0.3750
0.2500 0.3750 0.3750
0.2500 0.3750 0.3750

#

$

p(20) = p(0)P20 ! (1
4 , 3

8 , 3
8)

! initial distribution p(0):

Stationary Distribution

¥stationary distribution π :

¥Perron-Frobenius Theorem:

¥stochastic matrix P:

¥1 is also a left eigenvalue of P (eigenvalue of PT)

¥the left eigenvector is nonnegative

¥stationary distribution always exists

Markov chain M = (! , P)

! P = !

P1 = 1

! P = !

(fixed point)

P =

�

⇧⇧⇤

1/ 2 1/ 2 0 0
1/ 3 2/ 3 0 0
0 0 3/ 4 1/ 4
0 0 1/ 4 3/ 4

⇥

⌃⌃⌅

P20 �

!

"
"
#

0.4 0.6 0 0
0.4 0.6 0 0
0 0 0.5 0.5
0 0 0.5 0.5

$

%
%
&

1
2

1
2

1
3

2
3

3
4

1
4

3
4

1
4

reducible

1

1

P =
!
0 1
1 0

"

P2 =
!
1 0
0 1

"

P2k =
!
1 0
0 1

"

periodic

P2k+1 =
!
0 1
1 0

"

1/ 3

1/ 3

1/ 3

1/ 3

2/ 3

1

1
2

3

1
2

1
2

1
3

2
3

3
4

1
4

3
4

1
4

reducible

1

1
periodic

If a Þnite Markov chain is irreducible and
aperiodic, then ! initial distribution

M = (! , P)
! (0)

lim
t !"

! (0) P t = !

where is a unique stationary distribution satisfying !

⇡P = ⇡

Fundamental Theorem of Markov Chain:

(ergodic)

Irreducibility

¥y is accessible from x:

¥x communicates with y:

¥x is accessible from y
¥y is accessible from x

¥MC is irreducible: all pairs
of states communicate

x y

access

communicate

1
2

1
2

1
3

2
3

3
4

1
4

3
4

1
4

communicating classes

! t, P t (x, y) > 0

Reducible Chains

component
A

component
B

P =
!
PA 0
0 PB

"

component
A

component
B

stationary distributions: ! = "! A + (1 ! ")! B

stationary distribution: ! = (0, ! B)

absorbing!
case

Aperiodicity
¥period of state x:

¥aperiodic chain: all states have period 1

¥period: the gcd of lengths of cycles

x

dx = gcd{ t | P t (x, x) > 0}

dx = 3

A chain is aperiodic if " x! Ω, P(x,x)>0.
(every state has a self-loop)

If a Þnite Markov chain is irreducible and
aperiodic, then ! initial distribution

M = (! , P)
! (0)

lim
t !"

! (0) P t = !

where is a unique stationary distribution satisfying !

⇡P = ⇡

Fundamental Theorem of Markov Chain:

Þniteness existence

irreducibility uniqueness

ergodicity convergence

If a Markov chain is irreducible and
ergodic, then ! initial distribution

M = (! , P)
! (0)

lim
t !"

! (0) P t = !

where is a unique stationary distribution satisfying !

⇡P = ⇡

Fundamental Theorem of Markov Chain:

ergodic: convergent

!
Þnit chain: aperiodic

inÞnit chain: aperiodic
 +
non-null persistent

Random Walk on Graph
undirected graph G(V,E)

at each step, the current position is u ! V:

¥pick a neighbor v of u uniformly at random;
¥move to vertex v;

¥uniform random walk:

P (u, v) =

(
1

deg(u) if uv 2 E

0 if uv 62 E
¥ transition matrix:

irreducible

aperiodic

G is connected

G is non-bipartite

! = V

Random Walk on Graph
undirected graph G(V,E)

at each step, the current position is u ! V:

¥lazy random walk:

¥ transition matrix:

irreducible G is connected

P(u, v) =

!
"#

"$

1
2 if u = v

1
2deg(u) if uv ! E

0 otherwise

¥(lazy) for probability 1/2, do nothing;

¥else: pick a neighbor v of u uniformly at
random and move to vertex v;

always aperiodic!

! = V

Random Walk on Graph
undirected graph G(V,E)

¥lazy random walk: P(u, v) =

!
"#

"$

1
2 if u = v

1
2deg(u) if uv ! E

0 otherwise

P (u, v) =

(
1

deg(u) if uv 2 E

0 if uv 62 E¥uniform random walk:

stationary distribution

uniform walk:

lazy walk: ⇡P = ⇡ ! P ! = !P ! = 1
2 (I + P)

⇡(u) =
deg(u)
2|E|

(! P)v =
!

u! V

! (u)P(u, v) =
!

u" v

deg(u)
2|E |

1
deg(u)

=
deg(v)
2|E |

= ! (v)

Reversibility

time-reversible Markov chain:
! ! , " , x, y # ! , ! (x)P(x, y) = ! (y)P(y, x)

stationary distribution:

(! P)y =
!

x

! (x)P(x, y) =
!

x

! (y)P(y, x) = ! (y)

time-reversible:
Pr[X 0 = x0 ! X 1 = x1 ! . . . ! X n = xn]

= Pr[X 0 = xn ! X 1 = xn�1 ! . . . ! X n = x0]

when start from !

ergodic
flow

Detailed Balance Equation :
⇡(x)P(x, y) = ⇡(y)P(y, x)

Reversibility

time-reversible Markov chain:
! ! , " , x, y # ! , ! (x)P(x, y) = ! (y)P(y, x)

stationary distribution:

(! P)y =
!

x

! (x)P(x, y) =
!

x

! (y)P(y, x) = ! (y)

time-reversible:

(X 0, X 1, . . . , X n) ! (X n , X n ! 1, . . . , X 0)

when start from !

ergodic
flow

Detailed Balance Equation :
⇡(x)P(x, y) = ⇡(y)P(y, x)

Random Walk on Graph
undirected graph G(V,E)

¥lazy random walk: P(u, v) =

!
"#

"$

1
2 if u = v

1
2deg(u) if uv ! E

0 otherwise

P (u, v) =

(
1

deg(u) if uv 2 E

0 if uv 62 E¥uniform random walk:

u=v or u" v: detailed balanced equation holds for free

u#v: DBE holds when ! (u) !
1

P(u, v)
! deg(u)

Detailed Balance Equation :
⇡(x)P(x, y) = ⇡(y)P(y, x)

Random Walk on Graph
undirected graph G(V,E)

Detailed Balance Equation :
⇡(x)P(x, y) = ⇡(y)P(y, x)

max-degree ∆ = maxv deg(v)

P(u, v) =

!
"#

"$

1 ! deg(u)
2! if u = v

1
2! if uv " E
0 otherwise

! is uniform

Metropolis Algorithm

at each step, the current state is x ! Ω:

¥(proposal) propose y ! Ω with probability Q(x,y);
¥(Þlter) accept the proposal and move to y with

probability min{1, π(y)/π(x)};

Metropolis-Hastings Algorithm :

¥symmetric transition matrix Q over state space Ω:
QT = Q
Q1 = 1

!
1Q = 1 uniform stationary

¥Goal: a Markov chain with stationary distribution π

¥symmetric transition matrix Q over state space Ω:

P(x, x) = 1 !
!

y!= x

P(x, y)

for x≠y:

for x=y:

Detailed Balance Equation :
⇡(x)P(x, y) = ⇡(y)P(y, x)

at each step, the current state is x ! Ω:

¥(proposal) propose y ! Ω with probability Q(x,y);
¥(Þlter) accept the proposal and move to y with

probability min{1, π(y)/π(x)};

Metropolis-Hastings Algorithm :

P(x, y) = Q(x, y) min
!

1,
! (x)
! (y)

"

Constraint Satisfaction Problem

¥ variables: X = {x1, x2, ... , xn}

¥ domain: Ω, usually Ω = [q] for a Þnite q

¥ constraints: C = (ψ, S) where ψ: Ωk $ {0,1} and
scope S % X is a subset of k variables

¥ CSP instance I: a set of constraints deÞned on X

¥ assignment: σ! ΩX assigns values to variables

¥ a constraint C = (ψ, S) is satisÞed if ψ(σS) = 1

¥ CSP solution: an assignment σ is a solution to a
CSP instance if it satisÞes all constraints.

Input : a CSP instance I
 on n variables with domain [q];
Sample a uniform random CSP solution.

Initially, start with an arbitrary CSP solution;
at each step, the current CSP solution is σ=(σ1, … , σn):

¥(proposal) pick a variable i ! [n] and value c ! [q]
uniformly at random;

¥(Þlter) accept the proposal and change σi to c if it does
not violate any constraint;

Metropolis Algorithm :

uniform stationary distribution!
detailed
balanced
equation

Initially, start with an arbitrary independent set;
at each step:

¥(proposal) pick a vertex v ! V and b ! {0,1}
uniformly at random;

¥(Þlter) change vÕs state to b if the it gives an
independent set;

independent set

G(V,E)

σ ! {0,1}V

" uv ! E:
 NOT σu=σv=1

Initially, start with an arbitrary proper q-coloring;
at each step:

¥(proposal) pick a vertex v ! V and color c ! [q]
uniformly at random;

¥(Þlter) change vÕs color to c if the it gives a
proper coloring;

proper q-coloring

G(V,E)

σ ! [q]V

" uv ! E: σu≠σv

Glauber Dynamics

Initially, start with an arbitrary CSP solution;
at each step, the current CSP solution is σ=(σ1, … , σn):

¥ pick a variable i ! [n] uniformly at random;

¥ change value of σi to a uniform value c among all
σiÕs available values c: changing σi to c wonÕt violate
any constraint;

Glauber Dynamics :

Input : a CSP instance I
 on n variables with domain [q];
Sample a uniform random CSP solution.

uniform stationary distribution!detailed balanced equation

independent set

G(V,E)

σ ! {0,1}V

" uv ! E:
 NOT σu=σv=1

Initially, start with an arbitrary independent set;
at each step:

¥pick a uniform vertex v ! V;

¥change vÕs state to a uniform random b ! {0,1}
if all vÕs neighbors have state 0;

Glauber Dynamics :

proper q-coloring

G(V,E)

σ ! [q]V

" uv ! E: σu≠σv

Initially, start with an arbitrary proper q-coloring;
at each step:

¥pick a uniform vertex v ! V;

¥change vÕs color to a uniform random color c
among vÕs current available colors;

Glauber Dynamics :

