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Markov Chain
¥stochastic process:  X0, X1, X2, …

Xt !  Ω

¥Markov property (memoryless):

X t+1 depends only onXt

Pr[Xt +1 = y | X0 = x0, . . . , Xt ! 1 = xt ! 1, Xt = x]

=Pr[Xt +1 = y | Xt = x]

Markov chain :  discrete time discrete space
stochastic process with Markov property.

time

state space



Transition Matrix
¥Markov chain:  X0, X1, X2, … !  Ω

Pr[Xt +1 = y | X0 = x0, . . . , Xt ! 1 = xt ! 1, Xt = x]

=Pr[Xt +1 = y | Xt = x] = P(t )
xy = P

xy

(time-homogenous)

¥transition matrix P over Ω × Ω

(row-)stochastic matrix:   P1=1

¥homogeneity: transition does not depend on time

Pr[X
t+1 = y] =

!

x! ⌦

Pr[X
t+1 = y | X

t

= x] Pr[X
t

= x]



Transition Matrix
¥Markov chain: 

¥transition matrix P over Ω × Ω

p

( t ) (x) = Pr[ Xt = x]distribution

P(x, y) = Pr[ X t +1 = y | X t = x]

p(t +1) = p(t ) P

p(0) P!" p(1) P!" · · · · · · P!" p( t ) P!" · · ·
initial !

distribution
distribution!

of Xt

X0, X1, X2, … !  ΩM = ( ! , P)
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Convergence
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! initial distribution p(0):



Stationary Distribution

¥stationary distribution π :

¥Perron-Frobenius Theorem:

¥stochastic matrix P: 

¥1 is also a left eigenvalue of P (eigenvalue of PT)

¥the left eigenvector                is nonnegative

¥stationary distribution always exists

Markov chain M = ( ! , P)

! P = !

P1 = 1

! P = !

(fixed point)
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P =
!
0 1
1 0

"

P2 =
!
1 0
0 1

"

P2k =
!
1 0
0 1

"

periodic

P2k+1 =
!
0 1
1 0
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If a Þnite Markov chain                     is irreducible and 
aperiodic, then !  initial distribution 

M = ( ! , P)
! (0)

lim
t !"

! (0) P t = !

where    is a unique stationary distribution satisfying             !

⇡P = ⇡

Fundamental Theorem of  Markov Chain:

(ergodic)



Irreducibility

¥y is accessible from x:

¥x communicates with y: 

¥x is accessible from y
¥y is accessible from x

¥MC is irreducible: all pairs 
of states communicate

x y

access

communicate
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communicating  classes

! t, P t (x, y) > 0



Reducible Chains

component
A

component
B

P =
!
PA 0
0 PB

"

component
A

component
B

stationary distributions: ! = "! A + (1 ! " )! B

stationary  distribution: ! = ( 0, ! B)

absorbing!
case



Aperiodicity
¥period of state x:

¥aperiodic chain:  all states have period 1

¥period:   the gcd of lengths of cycles

x

dx = gcd{ t | P t (x, x ) > 0}

dx = 3

A chain is aperiodic if " x! Ω,  P(x,x)>0.
(every state has a self-loop)



If a Þnite Markov chain                     is irreducible and 
aperiodic, then !  initial distribution 

M = ( ! , P)
! (0)

lim
t !"

! (0) P t = !

where    is a unique stationary distribution satisfying             !

⇡P = ⇡

Fundamental Theorem of  Markov Chain:

Þniteness existence

irreducibility uniqueness

ergodicity convergence



If a Markov chain                     is irreducible and 
ergodic, then !  initial distribution 

M = ( ! , P)
! (0)

lim
t !"

! (0) P t = !

where    is a unique stationary distribution satisfying             !

⇡P = ⇡

Fundamental Theorem of  Markov Chain:

ergodic:  convergent

!
Þnit chain:   aperiodic

inÞnit chain:  aperiodic
                  +
non-null persistent



Random Walk on Graph
undirected graph G(V,E)

at each step, the current position is u !  V:

¥pick a neighbor v of u uniformly at random;
¥move to vertex v;

¥uniform random walk:

P (u, v) =

(
1

deg( u) if uv 2 E

0 if uv 62 E
¥ transition matrix:

irreducible

aperiodic

G is connected

G is non-bipartite

!  = V



Random Walk on Graph
undirected graph G(V,E)

at each step, the current position is u !  V:

¥lazy random walk:

¥ transition matrix:

irreducible G is connected

P(u, v) =

!
"#

"$

1
2 if u = v

1
2deg( u) if uv ! E

0 otherwise

¥(lazy) for probability 1/2, do nothing;

¥else: pick a neighbor v of u uniformly at 
random and move to vertex v;

always aperiodic!

!  = V



Random Walk on Graph
undirected graph G(V,E)

¥lazy random walk: P(u, v) =

!
"#

"$

1
2 if u = v

1
2deg( u) if uv ! E

0 otherwise

P (u, v) =

(
1

deg( u) if uv 2 E

0 if uv 62 E¥uniform random walk:

stationary distribution

uniform walk:

lazy walk: ⇡P = ⇡ ! P ! = !P ! = 1
2 (I + P )

⇡(u) =
deg(u)
2|E|

(! P)v =
!

u! V

! (u)P(u, v) =
!

u" v

deg(u)
2|E |

1
deg(u)

=
deg(v)
2|E |

= ! (v)



Reversibility

time-reversible Markov chain:
! ! , " , x, y # ! , ! (x)P(x, y) = ! (y)P(y, x)

stationary distribution:

(! P)y =
!

x

! (x)P(x, y) =
!

x

! (y)P(y, x) = ! (y)

time-reversible:
Pr[X 0 = x0 ! X 1 = x1 ! . . . ! X n = xn]

= Pr[X 0 = xn ! X 1 = xn�1 ! . . . ! X n = x0]

when start from !

ergodic  
flow

Detailed Balance Equation :
⇡(x)P(x, y) = ⇡(y)P(y, x)



Reversibility

time-reversible Markov chain:
! ! , " , x, y # ! , ! (x)P(x, y) = ! (y)P(y, x)

stationary distribution:

(! P)y =
!

x

! (x)P(x, y) =
!

x

! (y)P(y, x) = ! (y)

time-reversible:

(X 0, X 1, . . . , X n ) ! (X n , X n ! 1, . . . , X 0)

when start from !

ergodic  
flow

Detailed Balance Equation :
⇡(x)P(x, y) = ⇡(y)P(y, x)



Random Walk on Graph
undirected graph G(V,E)

¥lazy random walk: P(u, v) =

!
"#

"$

1
2 if u = v

1
2deg( u) if uv ! E

0 otherwise

P (u, v) =

(
1

deg( u) if uv 2 E

0 if uv 62 E¥uniform random walk:

u=v or u" v:   detailed balanced equation holds for free 

u#v:   DBE holds when ! (u) !
1

P(u, v)
! deg(u)

Detailed Balance Equation :
⇡(x)P(x, y) = ⇡(y)P(y, x)



Random Walk on Graph
undirected graph G(V,E)

Detailed Balance Equation :
⇡(x)P(x, y) = ⇡(y)P(y, x)

max-degree ∆ = maxv deg(v)

P(u, v) =

!
"#

"$

1 ! deg( u)
2! if u = v

1
2! if uv " E
0 otherwise

! is uniform



Metropolis Algorithm

at each step, the current state is x !  Ω:

¥(proposal) propose y !  Ω with probability Q(x,y);
¥(Þlter) accept the proposal and move to y with 

probability min{1, π(y)/π(x)};

Metropolis-Hastings Algorithm :

¥symmetric transition matrix Q over state space Ω:
QT = Q
Q1 = 1

!
1Q = 1 uniform stationary

¥Goal:  a Markov chain with stationary distribution π



¥symmetric transition matrix Q over state space Ω:

P(x, x ) = 1 !
!

y!= x

P(x, y)

for x≠y:

for x=y:

Detailed Balance Equation :
⇡(x)P(x, y) = ⇡(y)P(y, x)

at each step, the current state is x !  Ω:

¥(proposal) propose y !  Ω with probability Q(x,y);
¥(Þlter) accept the proposal and move to y with 

probability min{1, π(y)/π(x)};

Metropolis-Hastings Algorithm :

P(x, y) = Q(x, y) min
!

1,
! (x)
! (y)

"



Constraint Satisfaction Problem

¥ variables:  X = {x1, x2, ... , xn}

¥ domain:  Ω, usually Ω = [q] for a Þnite q

¥ constraints:  C = (ψ, S) where ψ: Ωk $  {0,1} and 
scope S % X is a subset of k variables

¥ CSP instance I: a set of constraints deÞned on X

¥ assignment: σ!  ΩX assigns values to variables

¥ a constraint C = (ψ, S) is satisÞed if ψ(σS) = 1

¥ CSP solution: an assignment σ is a solution to a 
CSP instance if it satisÞes all constraints.



Input :  a CSP instance I
             on n variables with domain [q];  
Sample a uniform random CSP solution.

Initially, start with an arbitrary CSP solution;
at each step, the current CSP solution is σ=(σ1, … , σn):

¥(proposal) pick a variable i !  [n] and value c !  [q] 
uniformly at random;

¥(Þlter) accept the proposal and change σi to c if it does 
not violate any constraint;

Metropolis Algorithm :

uniform stationary distribution!
detailed
balanced
equation



Initially, start with an arbitrary independent set;
at each step:

¥(proposal) pick a vertex v !  V and b !  {0,1} 
uniformly at random;

¥(Þlter) change vÕs state to b if the it gives an 
independent set;

independent set

G(V,E)

σ !  {0,1}V

"  uv !  E:  
   NOT σu=σv=1



Initially, start with an arbitrary proper q-coloring;
at each step:

¥(proposal) pick a vertex v !  V and color c !  [q] 
uniformly at random;

¥(Þlter) change vÕs color to c if the it gives a 
proper coloring;

proper q-coloring

G(V,E)

σ !  [q]V

"  uv !  E:  σu≠σv



Glauber Dynamics

Initially, start with an arbitrary CSP solution;
at each step, the current CSP solution is σ=(σ1, … , σn):

¥ pick a variable i !  [n] uniformly at random;

¥ change value of σi to a uniform value c among all 
σiÕs available values c:   changing σi to c wonÕt violate 
any constraint;

Glauber Dynamics :

Input :  a CSP instance I
             on n variables with domain [q];  
Sample a uniform random CSP solution.

uniform stationary distribution!detailed balanced equation



independent set

G(V,E)

σ !  {0,1}V

"  uv !  E:  
   NOT σu=σv=1

Initially, start with an arbitrary independent set;
at each step:

¥pick a uniform vertex v !  V;

¥change vÕs state to a uniform random b !  {0,1} 
if all vÕs neighbors have state 0;

Glauber Dynamics :



proper q-coloring

G(V,E)

σ !  [q]V

"  uv !  E:  σu≠σv

Initially, start with an arbitrary proper q-coloring;
at each step:

¥pick a uniform vertex v !  V;

¥change vÕs color to a uniform random color c 
among vÕs current available colors;

Glauber Dynamics :


