Advanced Algorithms

南京大学

尹一通
Markov Chain

- stochastic process: X_0, X_1, X_2, \ldots

 $X_t \in \Omega$

 Markov property (memoryless):

 X_{t+1} depends only on X_t

 $\Pr[X_{t+1} = y \mid X_0 = x_0, \ldots, X_{t-1} = x_{t-1}, X_t = x]$

 $= \Pr[X_{t+1} = y \mid X_t = x]$

Markov chain: discrete time discrete space stochastic process with Markov property.
Transition Matrix

• **Markov chain**: $X_0, X_1, X_2, \ldots \in \Omega$

 \[
 \Pr[X_{t+1} = y \mid X_0 = x_0, \ldots, X_{t-1} = x_{t-1}, X_t = x] = \Pr[X_{t+1} = y \mid X_t = x] = P_{xy}^{(t)} = P_{xy}
 \]

 (time-homogenous)

• **homogeneity**: transition does not depend on time

• **transition matrix** P over $\Omega \times \Omega$

 (row-)stochastic matrix: $P1 = 1$

\[
\Pr[X_{t+1} = y] = \sum_{x \in \Omega} \Pr[X_{t+1} = y \mid X_t = x] \Pr[X_t = x]
\]
Transition Matrix

- **Markov chain**: $\mathcal{M}, X(\Omega, \mathcal{P}) \ldots \in \Omega$

 Distribution: $p^{(t)}(x) = \Pr[X_t = x]$

- **transition matrix** P over $\Omega \times \Omega$

 $$P(x, y) = \Pr[X_{t+1} = y \mid X_t = x]$$

\[
\begin{align*}
p^{(t+1)} &= p^{(t)} P \\
p^{(0)} &\xrightarrow{P} p^{(1)} &\xrightarrow{P} \ldots &\xrightarrow{P} p^{(t)} &\xrightarrow{P} \ldots
\end{align*}
\]

- **initial distribution**
 - $p^{(0)}$
- **distribution of** X_t
 - $p^{(t)}$
\[P = \begin{bmatrix} 0 & 1 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} \]
Convergence

\[
P = \begin{bmatrix}
0 & 1 & 0 \\
1/3 & 0 & 2/3 \\
1/3 & 1/3 & 1/3
\end{bmatrix}
\]

\[
P^{20} \approx \begin{bmatrix}
0.2500 & 0.3750 & 0.3750 \\
0.2500 & 0.3750 & 0.3750 \\
0.2500 & 0.3750 & 0.3750
\end{bmatrix}
\]

\[
\forall \text{initial distribution } p^{(0)}:\quad p^{(20)} = p^{(0)}P^{20} \approx (\frac{1}{4}, \frac{3}{8}, \frac{3}{8})
\]
Stationary Distribution

Markov chain $\mathcal{M} = (\Omega, P)$

- stationary distribution π:
 \[\pi P = \pi \quad \text{(fixed point)} \]

- Perron-Frobenius Theorem:
 - stochastic matrix P:
 \[P1 = 1 \]
 - 1 is also a left eigenvalue of P (eigenvalue of P^T)
 - the left eigenvector $\pi P = \pi$ is nonnegative
- stationary distribution always exists
The transition matrix P is given by:

$$P = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 0 & 0 \\
0 & 0 & \frac{3}{4} & \frac{1}{4} \\
0 & 0 & \frac{1}{4} & \frac{3}{4}
\end{bmatrix}$$

The matrix P^{20} is approximately:

$$P^{20} \approx \begin{bmatrix}
0.4 & 0.6 & 0 & 0 \\
0.4 & 0.6 & 0 & 0 \\
0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0.5 & 0.5
\end{bmatrix}$$
$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$P^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$P^{2k} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
$P^{2k+1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
reducible

periodic
Fundamental Theorem of Markov Chain:

If a finite Markov chain $\mathcal{M} = (\Omega, P)$ is irreducible and aperiodic, then \forall initial distribution $\pi^{(0)}$ (ergodic)

$$\lim_{t \to \infty} \pi^{(0)} P^t = \pi$$

where π is a unique stationary distribution satisfying

$$\pi P = \pi$$
Irreducibility

• \(y \) is **accessible** from \(x \):
 \[\exists t, \ P^t(x, y) > 0 \]

• \(x \) **communicates** with \(y \):
 • \(x \) is accessible from \(y \)
 • \(y \) is accessible from \(x \)

• MC is **irreducible**: all pairs of states communicate
Reducible Chains

stationary distributions: \(\pi = \lambda \pi_A + (1 - \lambda) \pi_B \)

stationary distribution: \(\pi = (0, \pi_B) \)

\[P = \begin{bmatrix} P_A & 0 \\ 0 & P_B \end{bmatrix} \]
Aperiodicity

- **period** of state x:

 $$d_x = \gcd\{t \mid P^t(x, x) > 0\}$$

- **aperiodic** chain: all states have period 1

- **period**: the gcd of lengths of cycles

 $$\begin{array}{c}
 x \\
 \square \quad \square \quad \triangle \quad \square \quad \square \quad \triangle \quad \square \quad \square \quad \triangle \\
 \end{array}$$

 $$d_x = 3$$

A chain is *aperiodic* if $\forall x \in \Omega$, $P(x, x) > 0$. (every state has a self-loop)
If a finite Markov chain \(\mathcal{M} = (\Omega, P) \) is irreducible and aperiodic, then \(\forall \) initial distribution \(\pi^{(0)} \)

\[
\lim_{t \to \infty} \pi^{(0)} P^t = \pi
\]

where \(\pi \) is a unique stationary distribution satisfying

\[
\pi P = \pi
\]
Fundamental Theorem of Markov Chain:

If a Markov chain $\mathcal{M} = (\Omega, P)$ is irreducible and ergodic, then \forall initial distribution $\pi^{(0)}$

$$\lim_{t \to \infty} \pi^{(0)} P^t = \pi$$

where π is a unique stationary distribution satisfying $\pi P = \pi$

ergodic: convergent

- finit chain: aperiodic
- infinit chain: aperiodic + non-null persistent
Random Walk on Graph

undirected graph \(G(V,E) \)

- **uniform random walk**: \(\Omega = V \)

 at each step, the current position is \(u \in V \):
 - pick a neighbor \(v \) of \(u \) uniformly at random;
 - move to vertex \(v \);

- **transition matrix**:
 \[
 P(u, v) = \begin{cases}
 \frac{1}{\deg(u)} & \text{if } uv \in E \\
 0 & \text{if } uv \notin E
 \end{cases}
 \]

 irreducible \(\iff \) \(G \) is connected

 aperiodic \(\iff \) \(G \) is non-bipartite
Random Walk on Graph

undirected graph $G(V,E)$

• lazy random walk: $\Omega = V$

at each step, the current position is $u \in V$:

• (lazy) for probability $1/2$, do nothing;

• else: pick a neighbor v of u uniformly at random and move to vertex v;

• transition matrix:

$$P(u, v) = \begin{cases}
\frac{1}{2} & \text{if } u = v \\
\frac{1}{2\deg(u)} & \text{if } uv \in E \\
0 & \text{otherwise}
\end{cases}$$

irreducible $\iff G$ is connected

always aperiodic!
Random Walk on Graph

undirected graph $G(V,E)$

- **uniform random walk:**
 $$P(u, v) = \begin{cases}
 \frac{1}{\deg(u)} & \text{if } uv \in E \\
 0 & \text{if } uv \notin E
 \end{cases}$$

- **lazy random walk:**
 $$P(u, v) = \begin{cases}
 \frac{1}{2} & \text{if } u = v \\
 \frac{1}{2\deg(u)} & \text{if } uv \in E \\
 0 & \text{otherwise}
 \end{cases}$$

stationary distribution $\pi(u) = \frac{\deg(u)}{2|E|}$

uniform walk:
$$\left(\pi P\right)_v = \sum_{u \in V} \pi(u)P(u, v) = \sum_{u \sim v} \frac{\deg(u)}{2|E|} \frac{1}{\deg(u)} = \frac{\deg(v)}{2|E|} = \pi(v)$$

lazy walk:
$$P' = \frac{1}{2}(I + P) \quad \pi P = \pi \quad \pi P' = \pi$$
Reversibility

Detailed Balance Equation:

\[\pi(x)P(x, y) = \pi(y)P(y, x) \]

time-reversible Markov chain:

\[\exists \pi, \forall, x, y \in \Omega, \quad \pi(x)P(x, y) = \pi(y)P(y, x) \]

stationary distribution:

\[(\pi P)y = \sum_x \pi(x)P(x, y) = \sum_x \pi(y)P(y, x) = \pi(y) \]

time-reversible: when start from \(\pi \)

\[
\Pr[X_0 = x_0 \land X_1 = x_1 \land \ldots \land X_n = x_n] = \Pr[X_0 = x_n \land X_1 = x_{n-1} \land \ldots \land X_n = x_0]
\]
Reversibility

Detailed Balance Equation:
\[\pi(x)P(x, y) = \pi(y)P(y, x) \]

time-reversible Markov chain:
\[\exists \pi, \forall x, y \in \Omega, \quad \pi(x)P(x, y) = \pi(y)P(y, x) \]

stationary distribution:
\[(\pi P)y = \sum_x \pi(x)P(x, y) = \sum_x \pi(y)P(y, x) = \pi(y) \]

time-reversible: when start from \(\pi \)
\[(X_0, X_1, \ldots, X_n) \sim (X_n, X_{n-1}, \ldots, X_0) \]

ergodic flow
Random Walk on Graph

undirected graph $G(V,E)$

- **uniform random walk:** $P(u, v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } uv \in E \\ 0 & \text{if } uv \notin E \end{cases}$

- **lazy random walk:** $P(u, v) = \begin{cases} \frac{1}{2} & \text{if } u = v \\ \frac{1}{2\deg(u)} & \text{if } uv \in E \\ 0 & \text{otherwise} \end{cases}$

Detailed Balance Equation:

$$\pi(x)P(x, y) = \pi(y)P(y, x)$$

$u = v$ or $u \sim v$: detailed balanced equation holds for free

$u \sim v$: DBE holds when $\pi(u) \propto \frac{1}{P(u, v)} \propto \deg(u)$
Random Walk on Graph

undirected graph $G(V,E)$ \quad \text{max-degree } \Delta = \max_v \deg(v)

$$P(u, v) = \begin{cases}
1 - \frac{\deg(u)}{2\Delta} & \text{if } u = v \\
\frac{1}{2\Delta} & \text{if } uv \in E \\
0 & \text{otherwise}
\end{cases}$$

Detailed Balance Equation:

$$\pi(x)P(x, y) = \pi(y)P(y, x)$$

π is uniform
Metropolis Algorithm

• **symmetric** transition matrix Q over state space Ω:

 \[
 \begin{align*}
 Q^T &= Q \\
 Q1 &= 1
 \end{align*}
 \]

 \[1Q = 1\] uniform stationary

• **Goal**: a Markov chain with stationary distribution π

Metropolis-Hastings Algorithm:

at each step, the current state is $x \in \Omega$:

• **(proposal)** propose $y \in \Omega$ with probability $Q(x,y)$;

• **(filter)** accept the proposal and move to y with probability $\min\{1, \pi(y)/\pi(x)\}$;
• symmetric transition matrix Q over state space Ω:

Metropolis-Hastings Algorithm:

at each step, the current state is $x \in \Omega$:

- *(proposal)* propose $y \in \Omega$ with probability $Q(x, y)$;
- *(filter)* accept the proposal and move to y with probability $\min\{1, \frac{\pi(y)}{\pi(x)}\}$;

For $x \neq y$,

$$P(x, y) = Q(x, y) \min\left\{1, \frac{\pi(x)}{\pi(y)}\right\}$$

For $x = y$,

$$P(x, x) = 1 - \sum_{y \neq x} P(x, y)$$

Detailed Balance Equation:

$$\pi(x)P(x, y) = \pi(y)P(y, x)$$
Constraint Satisfaction Problem

• variables: \(X = \{x_1, x_2, \ldots, x_n\} \)
• domain: \(\Omega \), usually \(\Omega = [q] \) for a finite \(q \)
• constraints: \(C = (\psi, S) \) where \(\psi: \Omega^k \rightarrow \{0,1\} \) and scope \(S \subseteq X \) is a subset of \(k \) variables
• CSP instance \(I \): a set of constraints defined on \(X \)
• assignment: \(\sigma \in \Omega^X \) assigns values to variables
• a constraint \(C = (\psi, S) \) is satisfied if \(\psi(\sigma_S) = 1 \)
• CSP solution: an assignment \(\sigma \) is a solution to a CSP instance if it satisfies all constraints.
Input: a CSP instance I on n variables with domain $[q]$;
Sample a uniform random CSP solution.

Metropolis Algorithm:
Initially, start with an arbitrary CSP solution; at each step, the current CSP solution is $\sigma=(\sigma_1, \ldots, \sigma_n)$:

- **(proposal)** pick a variable $i \in [n]$ and value $c \in [q]$ uniformly at random;
- **(filter)** accept the proposal and change σ_i to c if it does not violate any constraint;

detailed balanced equation → **uniform stationary distribution!**
Initially, start with an arbitrary independent set; at each step:

- (proposal) pick a vertex \(v \in V \) and \(b \in \{0,1\} \) uniformly at random;
- (filter) change \(v \)'s state to \(b \) if the it gives an independent set;

\[
\sigma \in \{0,1\}^V
\]
\[
\forall \ uv \in E:
\quad \text{NOT } \sigma_u=\sigma_v=1
\]
Initially, start with an arbitrary proper q-coloring; at each step:

- *(proposal)* pick a vertex $v \in V$ and color $c \in [q]$ uniformly at random;
- *(filter)* change v’s color to c if the it gives a proper coloring;

proper q-coloring

$\sigma \in [q]^V$

$\forall \ uv \in E: \ \sigma_u \neq \sigma_v$
Glauber Dynamics

Input: a CSP instance I
on n variables with domain $[q]$;
Sample a uniform random CSP solution.

Glauber Dynamics:
Initially, start with an arbitrary CSP solution;at each step, the current CSP solution is $\sigma=(\sigma_1, \ldots, \sigma_n)$:

- pick a variable $i \in [n]$ uniformly at random;
- change value of σ_i to a uniform value c among all σ_i’s available values c: changing σ_i to c won’t violate any constraint;

detailed balanced equation \rightarrow uniform stationary distribution!
Glauber Dynamics:

Initially, start with an arbitrary independent set; at each step:

- pick a uniform vertex \(v \in V \);
- change \(v \)'s state to a uniform random \(b \in \{0,1\} \) if all \(v \)'s neighbors have state 0;
Glauber Dynamics:
Initially, start with an arbitrary proper q-coloring; at each step:

- pick a uniform vertex $v \in V$;
- change v's color to a uniform random color c among v's current available colors;