Advanced Algorithms

南京大学

尹一通
Knapsack Problem

Instance: n items $i=1,2,\ldots,n$;
weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$; values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$;
knapsack capacity $B \in \mathbb{Z}^+$;

Find a subset of items whose total weight is bounded by B and total value is maximized.
Knapsack Problem

Instance: \(n \) items \(i = 1, 2, \ldots, n \);
- weights \(w_1, w_2, \ldots, w_n \in \mathbb{Z}^+ \);
- values \(v_1, v_2, \ldots, v_n \in \mathbb{Z}^+ \);
- knapsack capacity \(B \in \mathbb{Z}^+ \);

Find an \(S \subseteq \{1, 2, \ldots, n\} \) that maximizes \(\sum_{i \in S} v_i \) subject to \(\sum_{i \in S} w_i \leq B \).

- 0-1 Knapsack problem
- one of Karp’s 21 NP-complete problems
Greedy Heuristics

Instance: n items $i=1,2,...,n$;
- weights $w_1, w_2, ..., w_n \in \mathbb{Z}^+$; values $v_1, v_2, ..., v_n \in \mathbb{Z}^+$;
- knapsack capacity $B \in \mathbb{Z}^+$;

Find an $S \subseteq \{1,2,...,n\}$ that maximizes $\sum_{i \in S} v_i$
subject to $\sum_{i \in S} w_i \leq B$.

Sort all items according to the ratio $r_i = \frac{v_i}{w_i}$
so that $r_1 \geq r_2 \geq \cdots \geq r_n$;
for $i=1,2,...,n$
item i joins S if the resulting total weight $\leq B$;

approximation ratio: arbitrarily bad
Dynamic Programming

Instance: n items $i=1, 2, ..., n$;
weights $w_1, w_2, ..., w_n \in \mathbb{Z}^+$; values $v_1, v_2, ..., v_n \in \mathbb{Z}^+$; knapsack capacity $B \in \mathbb{Z}^+$;

define:

$$A(i, v) = \text{minimum total weight of } S \subseteq \{1, 2, ..., i\} \text{ with total value exactly } v$$

$$A(i, v) = \infty \text{ if no such } S \text{ exists}$$
Dynamic Programming

Instance: n items $i=1, 2, \ldots, n$;
weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$; values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$;
knapsack capacity $B \in \mathbb{Z}^+$;

define:

$$A(i, v) = \begin{cases}
\min_{S \subseteq \{1, 2, \ldots, i\}} \sum_{j \in S} w_j & \text{if } \exists S \subseteq \{1, 2, \ldots, i\}, \\
\infty & \text{otherwise}
\end{cases}$$

subject to
$$\sum_{j \in S} v_j = v \quad j \in S$$
Dynamic Programming

Instance: n items $i=1, 2, \ldots, n$;
weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$; values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$;
knapsack capacity $B \in \mathbb{Z}^+$;

$$A(i, v) = \text{minimum total weight of } S \subseteq \{1, 2, \ldots, i\} \text{ with total value exactly } v$$

Recursion:

$$A(i, v) = \min\{ A(i-1, v), A(i-1, v-v_i) + w_i \} \quad \text{for } i > 1$$

$$A(1, v) = \begin{cases} w_1 & \text{if } v = v_1 \\ \infty & \text{otherwise} \end{cases}$$

1 $\leq i \leq n$, 1 $\leq v \leq V = \sum v_i$

Dynamic programming:
- table size $O(nV)$
- time complexity $O(nV)$
Dynamic Programming

Instance: n items $i=1,2,...,n$;
weights $w_1, w_2, ..., w_n \in \mathbb{Z}^+$; values $v_1, v_2, ..., v_n \in \mathbb{Z}^+$;
knapsack capacity $B \in \mathbb{Z}^+$;

Find a subset of items whose total weight is bounded by B and total value is maximized.

$$A(i, v) = \text{minimum total weight of } S \subseteq \{1,2, ..., i\}$$
with total value **exactly** v

knapsack:
$$\max v \text{ that } A(n,v) \leq B$$

Dynamic programming:
- table size $O(nV)$
- time complexity $O(nV)$
Polynomial Time

Instance: n items $i=1, 2, \ldots, n$;
weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$; values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$;
knapsack capacity $B \in \mathbb{Z}^+$;

time complexity: $O(nV)$ where $V = \sum_i v_i$

- **polynomial-time** Algorithm A:
 \exists constant c, \forall input $x \in \{0,1\}^*$, $A(x)$ terminates in $|x|^c$ steps
 $|x| = \text{length of input } x$ (in *binary* code)

- **pseudopolynomial-time** Algorithm A:
 \exists constant c, \forall input $x \in \{0,1\}^*$, $A(x)$ terminates in $|x|^c$ steps
 $|x| = \text{length of input } x$ (in *unary* code)
Dynamic Programming

Instance: \(n \) items \(i=1,2,\ldots,n; \)
- weights \(w_1, w_2, \ldots, w_n \in \mathbb{Z}^+; \)
- values \(v_1, v_2, \ldots, v_n \in \mathbb{Z}^+; \)
- knapsack capacity \(B \in \mathbb{Z}^+; \)

Find a subset of items whose total weight is bounded by \(B \) and total value is maximized.

\[
A(i, v) = \text{minimum total weight of } S \subseteq \{1,2,\ldots,i\} \text{ with total value exactly } v
\]

\[
A(i, v) = \min\{ A(i-1, v), A(i-1, v-v_i) + w_i \}
\]

\[
A(1, v) = \begin{cases} w_1 & \text{if } v = v_1 \\ \infty & \text{otherwise} \end{cases}
\]

knapsack: \(\max\{v: A(n,v) \leq B\} \)

Dynamic programming:
- time complexity \(O(nV) \)
 - where \(V = \sum_i v_i \)

Pseudo-Polynomial Time!
Instance: n items $i=1, 2, \ldots, n$;
weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$; values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$;
knapsack capacity $B \in \mathbb{Z}^+$;

Set $k =$ (to be fixed);
for $i=1, 2, \ldots, n$, let $v'_i = \lfloor v_i / k \rfloor$;
return the knapsack solution found by dynamic programming with new values v'_i;

v_i:

$\begin{array}{c}
0 \\
\hline
k \\
\hline
\end{array}$

$v_{\text{max}} = \max_{1 \leq i \leq n} v_i$
Scaling & Rounding

Instance: n items $i=1,2,...,n$;
weights $w_1, w_2, ..., w_n \in \mathbb{Z}^+$; values $v_1, v_2, ..., v_n \in \mathbb{Z}^+$;
knapsack capacity $B \in \mathbb{Z}^+$;

Set $k = \text{(to be fixed)}$;
for $i=1,2,...,n$, let $v'_i = \lfloor v_i / k \rfloor$;
return the knapsack solution found by dynamic programming with new values v'_i;

time complexity: $O(n \cdot V') = O(nV/k)$

where $V' = \sum_i v'_i = \sum_i \lfloor v_i / k \rfloor = O(V/k)$
and $V = \sum_i v_i$
Instance: n items $i=1,2,...,n$;
weights $w_1, w_2, ..., w_n \in \mathbb{Z}^+$; values $v_1, v_2, ..., v_n \in \mathbb{Z}^+$;
knapsack capacity $B \in \mathbb{Z}^+$;

Set $k = (to be fixed)$;
for $i=1,2,...,n$, let $v'_i = \lfloor v_i / k \rfloor$;
return the knapsack solution found by dynamic programming with new values v'_i;

time complexity: $O(nV/k)$ where $V = \sum v_i$

S^*: optimal knapsack solution of the original instance
$$OPT = \sum_{i \in S^*} v_i = k \sum_{i \in S^*} \frac{v_i}{k} \leq k \sum_{i \in S^*} \left(\left\lfloor \frac{v_i}{k} \right\rfloor + 1 \right) \leq k \sum_{i \in S^*} \left\lfloor \frac{v_i}{k} \right\rfloor + nk$$

S: the solution returned by the algorithm (optimal solution of the scaled instance)
$$SOL = \sum_{i \in S} v_i \geq k \sum_{i \in S} \left\lfloor \frac{v_i}{k} \right\rfloor \geq k \sum_{i \in S^*} \left\lfloor \frac{v_i}{k} \right\rfloor \geq OPT - nk$$
Instance: n items $i=1,2,\ldots,n$;
weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$; values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$;
knapsack capacity $B \in \mathbb{Z}^+$;

Set $k =$ (to be fixed);
for $i=1,2,\ldots,n$, let $v'_i = \lfloor v_i / k \rfloor$;
return the knapsack solution found by dynamic programming with new values v'_i;

time complexity: $O(nV/k)$ where $V = \sum_i v_i \leq nv_{\text{max}}$

OPT: optimal value of the original instance
SOL: value of the solution returned by the algorithm

$SOL \geq OPT - nk \implies \frac{SOL}{OPT} \geq 1 - \frac{nk}{OPT} \geq 1 - \frac{nk}{v_{\text{max}}}$

WLOG: $OPT \geq v_{\text{max}} = \max_{1 \leq i \leq n} v_i$
Instance: \(n \) items \(i=1,2, ..., n; \)

weights \(w_1, w_2, ..., w_n \in \mathbb{Z}^+ \); values \(v_1, v_2, ..., v_n \in \mathbb{Z}^+ \);

knapsack capacity \(B \in \mathbb{Z}^+ \);

for any \(0 \leq \epsilon \leq 1 \):

Set \(k = \left\lfloor \frac{\epsilon v_{\text{max}}}{n} \right\rfloor \); where \(v_{\text{max}} = \max_{1 \leq i \leq n} v_i \)

for \(i=1,2, ..., n \), let \(v'_i = \lfloor v_i / k \rfloor \);

return the knapsack solution found by dynamic programming with new values \(v'_i \);

time complexity: \(O \left(\frac{n^2 v_{\text{max}}}{k} \right) = O \left(\frac{n^3}{\epsilon} \right) \)

OPT: optimal value of the original instance

SOL: value of the solution returned by the algorithm

\[
\frac{\text{SOL}}{\text{OPT}} \geq 1 - \frac{nk}{v_{\text{max}}} \geq 1 - \epsilon
\]
Approximation Ratio

Optimization problem:

- instance I:

 \[\text{OPT}(I) = \text{optimum of instance } I \]

- algorithm A: returns a solution s for every instance I

 \[\text{SOL}_A(I) = \text{value returned by } A \text{ on instance } I \]

minimization: approximation ratio of algorithm A is α

\[
\text{if } \forall \text{ instance } I : \quad \frac{\text{SOL}_A(I)}{\text{OPT}(I)} \leq \alpha
\]

maximization: approximation ratio of algorithm A is α

\[
\text{if } \forall \text{ instance } I : \quad \frac{\text{SOL}_A(I)}{\text{OPT}(I)} \geq \alpha
\]

ϵ-approximation: \((1-\epsilon) \text{OPT}(I) \leq \text{SOL}_A(I) \leq (1+\epsilon) \text{OPT}(I) \)

(maximization) (minimization)
Approximation Ratio

Optimization problem:

- **instance** I:
 \[
 \text{OPT}(I) = \text{optimum of instance } I
 \]

- **algorithm** A: returns a solution s for every instance I and $0 \leq \varepsilon \leq 1$

 \[
 \text{SOL}_A(\varepsilon, I) = \text{value returned by } A \text{ on instance } I \text{ and } \varepsilon
 \]

- A is a **Polynomial-Time Approximation Scheme (PTAS)** if:
 \[
 \forall 0 \leq \varepsilon \leq 1, \ A \text{ returns in polynomial time and}
 \]
 \[
 (1-\varepsilon) \ \text{OPT}(I) \leq \text{SOL}_A(\varepsilon, I) \leq (1+\varepsilon) \ \text{OPT}(I)
 \]

 (maximization) \hspace{1cm} (minimization)

- A is a **Fully Polynomial-Time Approximation Scheme (FPTAS)** if:
 furthermore, A returns in time \text{Poly}(1/\varepsilon, n)$ where $n = |I|$

 (in binary code)
Instance: n items $i=1, 2, \ldots, n$;
weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$; values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$;
knapsack capacity $B \in \mathbb{Z}^+$;

for any $0 \leq \varepsilon \leq 1$:

Set $k = \left\lfloor \frac{\varepsilon v_{\text{max}}}{n} \right\rfloor$; where $v_{\text{max}} = \max_{1 \leq i \leq n} v_i$
for $i=1, 2, \ldots, n$, let $v'_i = \lfloor v_i / k \rfloor$;
return the knapsack solution found by dynamic programming with new values v'_i;

time complexity: $O\left(\frac{n^3}{\varepsilon}\right)$
approximation ratio: $\frac{\text{SOL}}{\text{OPT}} \geq 1 - \varepsilon$

Are FPTASs the “best” approximation algorithms?
Instance: n items $i=1,2, \ldots, n$; with sizes $s_1, s_2, \ldots, s_n \in \mathbb{Z}^+$;

Find a *packing* of the n items into *smallest* number of *bins* with *capacity* $B \in \mathbb{Z}^+$.
Bin Packing

Instance: n items $i=1,2,...,n$;
with sizes $s_1, s_2, ..., s_n \in (0, 1]$;

Find a *packing* of the n items into *smallest* number of *unit-sized bins*.

items:

![Items Diagram]

bins:

![Bins Diagram]
Instance: n items $i=1,2,\ldots, n$;
with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$;
Find a $\phi: [n] \rightarrow [m]$ with smallest m such that
\[\forall j \in [m], \sum_{i: \phi(i) = j} s_i \leq 1. \]
First Fit

Instance: n items $i=1, 2, \ldots, n$; with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$; Find a **packing** of the n items into **smallest** number of **unit-sized bins**.

- **NP-hard.**

FirstFit

Initially $k=1$; for $i=1, 2, \ldots, n$

- item i joins the **first** bin among $1, 2, \ldots, k$ in which it **fits**;
- if item i can fit into none of these k bins open a new bin $k++$ and item i joins it;
FirstFit

Initially $k=1$;
for $i=1, 2, \ldots, n$
item i joins the first bin among $1, 2, \ldots, k$ in which it fits;
if item i can fit into none of these k bins
open a new bin $k++$ and item i joins it;

items:
Instance: n items with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$;
Pack them into smallest number of unit-sized bins.

FirstFit

Initially $k=1$;
for $i=1,2, \ldots, n$
item i joins the first bin among $1,2, \ldots, k$ in which it fits;
if item i can fit into none of these k bins
open a new bin $k++$ and item i joins it;

Observation: All but at most one bin are more than half full.

\[\sum_i s_i > \left(\frac{SOL - 1}{2} \right) \]

\[OPT \geq \sum_i s_i \]

\[SOL - 1 < 2 \sum_i s_i \leq 2 OPT \]

\[SOL \leq 2 OPT \]
Instance: n items with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$; Pack them into smallest number of unit-sized bins.

FirstFit

Initially $k=1$;
for $i=1, 2, \ldots, n$
 item i joins the first bin among $1, 2, \ldots, k$ in which it fits;
 if item i can fit into none of these k bins
 open a new bin $k++$ and item i joins it;

Assumption: If all items are small, $s_i < \gamma < 0.5$

Observation: All but at most one bin are more than $(1-\gamma)$ full.

\[\sum_i s_i > (1-\gamma)(SOL - 1) \implies SOL \leq OPT / (1-\gamma) + 1 \]
Instance: n items with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$; Pack them into smallest number of unit-sized bins.

Theorem
Unless $P=NP$, there is no poly-time approximation algorithm for bin packing with approximation ratio $<3/2$.

Input: n numbers $x_1, x_2, \ldots, x_n \in \mathbb{Z}^+$. Determine whether \exists a partition of $\{1, 2, \ldots, n\}$ into A and B such that $\sum_{i \in A} x_i = \sum_{i \in B} x_i$.

reduction from the partition problem:

n items with sizes s_1, s_2, \ldots, s_n where $s_i = 2x_i / \sum_j x_j$

\exists a packing into 2 unit-sized bins \rightarrow “yes” \rightarrow partition problem

all packings use ≥ 3 unit-sized bins \rightarrow “no” \rightarrow partition problem
Instance: \(n \) items with sizes \(s_1, s_2, \ldots, s_n \in (0, 1] \); Pack them into smallest number of unit-sized bins.

Theorem

Unless \(P = NP \), there is no poly-time approximation algorithm for bin packing with approximation ratio \(<3/2\).

It is \(NP \)-hard to distinguish between:

- the instances with \(OPT = 2 \);
- the instances with \(OPT \geq 3 \).

FirstFitDecreasing (FFD)

Sort items in non-increasing order of sizes; run **FirstFit**;

FFD returns a packing into \(\leq 11/9 \ OPT + 1 \) bins

\((1+\varepsilon) \ OPT + 1?\)
Dynamic Programming

Instance: n items with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$;
Pack them into *smallest* number of unit-sized bins.

Assumption:
- $|\{s_1, s_2, \ldots, s_n\}| = k$
 - There are k distinct sizes: $s^{(1)}, s^{(2)}, \ldots, s^{(k)}$
 - n_1, n_2, \ldots, n_k where $\sum_j n_j = n$
There are exactly n_j items of size $s^{(j)}$ for $j = 1, 2, \ldots, k$.

Let $\text{Bins}(i_1, i_2, \ldots, i_k) = \text{minimum \# of bins to pack}$:

$OPT = \text{Bins}(n_1, n_2, \ldots, n_k)$

- $i_1 \times$ items of size $s^{(1)}$
- $i_2 \times$ items of size $s^{(2)}$
- \vdots
- $i_k \times$ items of size $s^{(k)}$
Dynamic Programming

Instance: n items with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$; pack them into smallest number of unit-sized bins.

Assumption:
- $|\{s_1, s_2, \ldots, s_n\}| = k$
 k distinct sizes: $s^{(1)}, s^{(2)}, \ldots, s^{(k)}$

$OPT = Bins(n_1, n_2, \ldots, n_k) = \text{minimum } \# \text{ of bins to pack:}$

$n_j \times \text{items of size } s^{(j)}, 1 \leq j \leq k$

Recursion:
$Bins(i_1, i_2, \ldots, i_k) = 1 +$

$$\min_{\bar{x} = (x_1, \ldots, x_k)} Bins(i_1 - x_1, \ldots, i_k - x_k)$$

enumerable in time $O(n^k)$

Dynamic programming:
- table size $O(n^k)$
- time complexity $O(n^{2k})$
Grouping & Rounding

Instance \(I \): \(n \) items with sizes \(s_1, s_2, \ldots, s_n \in (0, 1] \);

linear grouping:

- Sort items in non-decreasing order: \(s_1 \leq s_2 \leq \cdots \leq s_n \)
- Partition them into \(k \) groups, each with \(\leq \lceil n/k \rceil \) items.
- Round up the size of each item to the size of the largest item in its group.

Instance \(I' \): \(n \) items with sizes \(s_1, s_2, \ldots, s_n \in (0, 1] \)
where \(|\{s_1, s_2, \ldots, s_n\}| = k \)
Instance \(I \): \(n \) items with sizes \(s_1, s_2, \ldots, s_n \in (0, 1] \);

\[I' \]

\begin{align*}
I' & : \\
J & : \\
\end{align*}

\[s_i : \]

\[0 \]

\[1 \]

\[k \text{ groups} \]

\[\leq \lfloor n/k \rfloor \text{ items} \]

\[\]

\[\]

\[\]

\[\]

Lemma: \(\text{OPT}(I) \leq \text{OPT}(I') \leq \text{OPT}(I) + \left\lceil n/k \right\rceil \)

- any packing of \(I' \) must be a feasible packing of \(I \): \(\text{OPT}(I) \leq \text{OPT}(I') \)
- consider **rounding down** version \(J \) of \(I' \): \(\text{OPT}(J) \leq \text{OPT}(I) \)

any packing of \(J \) corresponds to a packing of \(I' \) except for the last group

\[\text{OPT}(I') \leq \text{OPT}(J) + \left\lceil n/k \right\rceil \]
Instance \(I \): \(n \) items with sizes \(s_1, s_2, \ldots, s_n \in (0, 1] \);

Lemma: \(\text{OPT}(I) \leq \text{OPT}(I') \leq \text{OPT}(I) + \left\lceil \frac{n}{k} \right\rceil \)

= SOL of DP in time \(O(n^{2k}) \)

\[
\frac{\text{SOL}}{\text{OPT}} \leq 1 + \left\lceil \frac{n}{k} \right\rceil \leq 1 + \epsilon ?
\]
Instance I: n items with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$;

Assumption:

- $\forall 1 \leq i \leq n$: $s_i \geq \gamma$

 - each bin contains $\leq 1/\gamma$ items

 - $OPT \geq \gamma n$

Linear Grouping

I':

- S_i: $0 \leq s_i \leq 1$
- k groups

- $\leq \lfloor n/k \rfloor$ items

$$\frac{SOL}{OPT} \leq 1 + \frac{\lfloor n/k \rfloor}{OPT} \leq 1 + \frac{2}{\gamma k}$$
Instance I: n items with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$;

Instance I'': n items with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$ where $s_i \geq \gamma$ for all $1 \leq i \leq n$.

Lemma: Given any packing of I'' into m bins, using FirstFit to pack items in I of sizes $< \gamma$, altogether uses m' bins:

$$m' \leq \min\{m, \frac{\text{OPT}(I)}{1-\gamma} + 1\}$$

- Case 1: FirstFit does not open a new bin: $m' = m$
- Case 2: FirstFit opens a new bin:

All but at most one bin are more than $(1-\gamma)$ full.

$$\sum_i s_i > (1-\gamma)(m'-1) \quad \Rightarrow \quad m' \leq \sum_i s_i / (1-\gamma) + 1 \leq \text{OPT}(I)/(1-\gamma) + 1$$
Instance I: n items with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$;

Instance I'': n items with sizes $s_1, s_2, \ldots, s_n \in (0, 1]$ where $s_i \geq \gamma$ for all $1 \leq i \leq n$.

Algorithm

Remove all items of size $< \gamma$: $I \Rightarrow I''$;
apply linear grouping with k groups & round up: $I'' \Rightarrow I'$;
find OPT(I') by dynamic programming in $O(n^{2k})$ time;
pack items of size $< \gamma$ by FirstFit;
Algorithm

Remove all items of size $< \gamma$: $I \Rightarrow I''$;
apply linear grouping with k groups & round up: $I'' \Rightarrow I'$;
find $\text{OPT}(I')$ by dynamic programming in $O(n^{2k})$ time;
pack items of size $< \gamma$ by **FirstFit**;

Lemma: Given any packing of I'' into m bins, using **FirstFit** to pack items in I of sizes $< \gamma$, altogether uses m' bins:

$$m' \leq \min\{ m, \text{OPT}(I)/(1-\gamma) + 1 \}$$

$$\text{SOL} \leq \min\{ \text{OPT}(I'), \text{OPT}(I)/(1-\gamma) + 1 \}$$

Lemma: $\text{OPT}(I'') \leq \text{OPT}(I') \leq \text{OPT}(I'') + \lceil n(I'')/k \rceil$

$$\text{SOL} \leq \min\{ \text{OPT}(I'') + \lceil n(I'')/k \rceil, \text{OPT}(I)/(1-\gamma) + 1 \}$$
Algorithm

Remove all items of size < γ : $I \Rightarrow I''$;
apply linear grouping with k groups & round up: $I'' \Rightarrow I'$;
find $\text{OPT}(I')$ by dynamic programming in $O(n^{2k})$ time;
pack items of size < γ by FirstFit;

Lemma: Given any packing of I'' into m bins, using FirstFit to pack items in I of sizes < γ, altogether uses m' bins:

$$m' \leq \min \{ m, \frac{\text{OPT}(I)}{1-\gamma} + 1 \}$$

$$\text{SOL} \leq \min \{ \text{OPT}(I'), \frac{\text{OPT}(I)}{1-\gamma} + 1 \}$$

Lemma: $\text{OPT}(I'') \leq \text{OPT}(I') \leq \text{OPT}(I'') + \lceil n(I'')/k \rceil$

$$\text{SOL} \leq \min \{ (1+ 2/\gamma k) \text{OPT}(I''), \frac{\text{OPT}(I)}{1-\gamma} + 1 \}$$

large items: $\text{OPT}(I'') \geq \gamma n(I'')$
Algorithm

Remove all items of size $< \gamma : I \Rightarrow I''$;
apply linear grouping with k groups & round up: $I'' \Rightarrow I'$;
find $\text{OPT}(I')$ by dynamic programming in $O(n^{2k})$ time;
pack items of size $< \gamma$ by FirstFit;

Lemma: Given any packing of I'' into m bins, using FirstFit
to pack items in I of sizes $< \gamma$, altogether uses m' bins:

$$m' \leq \min\{ m, \frac{\text{OPT}(I)}{1-\gamma} + 1 \}$$

$$\text{SOL} \leq \min\{ \text{OPT}(I'), \frac{\text{OPT}(I)}{1-\gamma} + 1 \}$$

Lemma: $\text{OPT}(I'') \leq \text{OPT}(I') \leq \text{OPT}(I'') + \left\lfloor \frac{n(I'')}{k} \right\rfloor$

$$\text{SOL} \leq \min\{ (1 + \frac{2}{\gamma k}) \text{OPT}(I), \frac{\text{OPT}(I)}{1-\gamma} + 1 \}$$

large items: $\text{OPT}(I'') \geq \gamma n(I'')$ trivially: $\text{OPT}(I'') \leq \text{OPT}(I)$
Algorithm

Remove all items of size \(< \gamma : I \Rightarrow I''\);
apply linear grouping with \(k\) groups & round up: \(I'' \Rightarrow I'\);
find \(\text{OPT}(I')\) by dynamic programming in \(O(n^{2k})\) time;
pack items of size \(< \gamma\) by FirstFit;

\[
SOL \leq \min \{ (1 + 2/\gamma k) \text{OPT}(I), \ \text{OPT}(I)/(1-\gamma) + 1 \}
\]

\[
\leq (1 + \epsilon)OPT + 1
\]

choose \(\gamma = \epsilon/2\) and \(k = 4/\epsilon^2\)

time complexity: \(n^{O(1/\epsilon^2)}\)

approximation: \(SOL \leq (1 + \epsilon)OPT + 1\)

Asymptotic PTAS
Scheduling

m machines

n jobs

makespan
Scheduling

m machines

n jobs with processing time p_j

Instance: n jobs $j=1, 2, \ldots, n$ each with processing time $p_j \in \mathbb{Z}^+$. Find a schedule of n jobs to m machines that minimizes the makespan C_{max}.
Scheduling:

Instance: \(n \) jobs \(j=1, 2, \ldots, n \)

each with processing time \(p_j \in \mathbb{Z}^+ \).

Find a schedule of \(n \) jobs to \(m \) machines that minimizes the makespan \(C_{\text{max}} \).

- The *List* algorithm has approximation ratio 2.
- The *LPT (Longest Processing Time)* algorithm has approximation ratio \(4/3 \).
- The problem of minimum makespan on identical machines has a *PTAS (Polynomial Time Approximation Scheme)*.
Scheduling:

Instance: \(n \) jobs \(j=1, 2, \ldots, n \) each with processing time \(p_j \in \mathbb{Z}^+ \).

Find a schedule of \(n \) jobs to \(m \) machines that minimizes the makespan \(C_{\text{max}} \).

Bin packing:

Instance: \(n \) items \(i=1, 2, \ldots, n \);

with sizes \(p_1, p_2, \ldots, p_n \in \mathbb{Z}^+ \);

Find a packing of the \(n \) items into smallest number of bins with capacity \(B \in \mathbb{Z}^+ \).

Given an instance \(I: p_1, p_2, \ldots, p_n \)

\[
C_{\text{max}}(I) = \min \{ B : \text{Bins}(I, B) \leq m \}
\]
Scheduling:

Instance: n jobs $j=1, 2, \ldots, n$

each with processing time $p_j \in \mathbb{Z}^+$.

Find a schedule of n jobs to m machines that minimizes the *makespan* C_{max}.

Given an instance I: p_1, p_2, \ldots, p_n

$$C_{\text{max}}(I) = \min \{ B : \text{Bins}(I, B) \leq m \}$$

$$L = \max \left\{ \max_{1 \leq j \leq n} p_j, \frac{1}{m} \sum_{j=1}^{n} p_j \right\} \leq \text{OPT} \leq 2 \cdot L$$

idea for algorithm:

binary search for B between $[L, 2L]$ to find the minimum B such that $\text{Bins}(I, B) \leq m$;
Given an instance I: p_1, p_2, \ldots, p_n

$$C_{\text{max}}(I) = \min\{ B : \text{Bins}(I, B) \leq m \}$$

idea for algorithm:

binary search for B between $[L, 2L]$ to find the minimum B such that $\text{Bins}(I', B) \leq m$;

I': • group jobs into k intervals $[B/(1+\varepsilon)^{t+1}, B/(1+\varepsilon)^{t}]$;
 • round down;

to further control the time complexity:
 • deal with small jobs ($p_j < B/(1+\varepsilon)^{k+1}$) separately;

This will give a PTAS for scheduling.