The Socle of the Last Term in the Minimal Injective Resolution of a Gorenstein Module

Weiling Songa, Xiaojin Zhangb, Zhaoyong Huangc,†

aDepartment of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, P.R. China;
bSchool of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, P.R. China
cDepartment of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China

Abstract

Let R be a left Noetherian ring, S a right Noetherian ring and RU a Gorenstein module with $S = \text{End}(RU)$. If the injective dimensions of RU and US are finite, then the last term in the minimal injective resolution of RU has an essential socle.

1 Introduction

Recall that a left and right Noetherian ring is called Gorenstein if its left and right self-injective dimensions are finite. The following question still remains open.

\textbf{Question 1.1.} For a Gorenstein ring R, is the socle of the last term in the minimal injective resolution of RU non-zero?

The answer to this question is positive in any case of the following

(1) R is a left and right Artinian ring.

(2) The left and right self-injective dimensions of R are at most 2 ([7, Theorem 4.5]).

(3) R is an Auslander-Gorenstein ring ([5, Proposition 1.1]).

Furthermore, in the case (3) above, Iwanaga and Sato showed in [12, Theorem 6] that this socle is essential in the last term. As a natural generalization of Auslander’s n-Gorenstein rings, Huang introduced in [8] the notion of n-Gorenstein modules such that a left and right Noetherian ring R is
Auslander’s \(n \)-Gorenstein if and only if it is \(n \)-Gorenstein as an \(R \)-module. Then Huang and Wang proved in [11, Theorem 3.1] that for left and right Noetherian rings \(R \) and \(S \) and a generalized tilting module \(_RU \) with \(S = \text{End}(RU) \), if \(_RU \) is \((n - 2)\)-Gorenstein with the injective dimensions of \(_RU \) and \(U_S \) being \(n \) (where \(n \) is a non-negative integer), then the socle of the last term in the minimal injective resolution of \(_RU \) is non-zero. In this paper we extend these results and prove the following

Theorem 1.2. Let \(R \) be a left Noetherian ring, \(S \) a right Noetherian ring and \(_RU \) a Gorenstein module with \(S = \text{End}(RU) \). If the injective dimensions of \(_RU \) and \(U_S \) are finite, then the last term in the minimal injective resolution of \(_RU \) has an essential socle.

In Section 2, we give some terminology and some preliminary results. In Section 3, we introduce the notion of Gorenstein modules. Let \(R \) be a left Noetherian ring, \(S \) a right Noetherian ring and \(_RU \) a Gorenstein module with \(S = \text{End}(RU) \) such that the injective dimensions of \(_RU \) and \(U_S \) are equal to \(n \). We first prove that \(\text{Ext}^i_{S^{op}}(N, U) \) is an Artinian left \(R \)-module for any finitely generated right \(S \)-module \(N \). Then we get that any non-zero submodule of the last term in the minimal injective resolution of \(_RU \) has a non-zero Artinian submodule. Theorem 1.2 follows from this result.

2 Preliminaries

Let \(R \) be an arbitrary associative ring with identity, and let \(\text{Mod } R \) be the category of left \(R \)-modules and \(\text{mod } R \) the category of finitely generated left \(R \)-modules. For a module \(M \) in \(\text{Mod } R \), we use \(\text{add}_R M \) to the full subcategory of \(\text{Mod } R \) consisting of modules isomorphic to direct summands of finite direct sums of copies of \(R \)M, and use \(\text{pd}_R M \), \(\text{id}_R M \) and \(\text{fd}_R M \) to denote the projective, injective and flat dimensions of \(M \) respectively. We use \(\text{gen}^*(R) \) to denote the full subcategory of \(\text{mod } R \) consisting of modules admitting a degreewise finite \(R \)-projective resolution.

Definition 2.1. ([17, 18]) A module \(_RU \) is called generalized tilting (sometimes it is also called Wakamatsu tilting, see [2, 13]), if the following conditions are satisfied.

1. \(_RU \in \text{gen}^*(R) \).
2. \(\text{Ext}_R^{>1}(U, U) = 0 \), that is, \(_RU \) is self-orthogonal.
3. There exists an exact sequence

 \[
 0 \rightarrow _RU \rightarrow U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_i \rightarrow \cdots
 \]

 in \(\text{mod } R \) with all \(U_i \) in \(\text{add}_R U \), such that after applying the functor \(\text{Hom}_R(-, _RU) \) the sequence is still exact.
Let \(R \) and \(S \) be arbitrary associative rings with identity. Recall that a bimodule \(R_U S \) is called \textit{faithfully balanced} if \(R = \text{End}(U_S) \) and \(S = \text{End}(RU) \). By [18, Corollary 3.2], we have that \(R_U S \) is faithfully balanced and self-orthogonal with \(RU \in \text{gen}^*(R) \) and \(US \in \text{gen}^*(S) \) if and only if \(RU \) is generalized tilting with \(S = \text{End}(RU) \), and if and only if \(US \) is generalized tilting with \(R = \text{End}(US) \). Note that a faithfully balanced and self-orthogonal bimodule \(R_U S \) with \(RU \in \text{gen}^*(R) \) and \(US \in \text{gen}^*(S) \) is also called a \textit{semidualizing bimodule} (cf. [11]).

Let \(RU \) be a generalized tilting module with \(S = \text{End}(RU) \). We write \((\cdot)^* := \text{Hom}(RU, \cdot) \) and \(\cdot^*: \text{Hom}(\cdot, RU) \).

We use
\[
0 \to RU \to E_0 \to E_1 \to \cdots \to E_i \to \cdots
\]

to denote the minimal injective resolution of \(RU \) and \(K_i = \text{Ker}(E_i \to E_{i+1}) \) for any \(i \geq 0 \) (note: \(K_0 = RU \)), and use
\[
0 \to US \to E'_0 \to E'_1 \to \cdots \to E'_i \to \cdots
\]

to denote the minimal injective resolution of \(US \). Following [8], we use \(\text{add-lim}\ RU \) (resp. \(\text{add-lim}\ US \)) to denote the full subcategory of \(\text{Mod}R \) (resp. \(\text{Mod}S^{op} \)) consisting of all modules isomorphic to direct summands of a direct limit of a family of modules in which each is a finite direct sum of copies of \(RU \) (resp. \(US \)).

Definition 2.2. ([8]) For a module \(M \) in \(\text{Mod}R \), if there exists an exact sequence
\[
\cdots \to U_n \to \cdots \to U_1 \to U_0 \to M \to 0
\]
in \(\text{Mod}R \) with all \(U_i \) in \(\text{add-lim}\ RU \), then we define \(\text{U-lim}\dim_R M = \inf\{n \mid \text{there exists an exact sequence}
\]
\[
0 \to U_n \to \cdots \to U_1 \to U_0 \to M \to 0
\]
in \(\text{Mod}R \) with all \(U_i \) in \(\text{add-lim}\ RU \}. \) We set \(\text{U-lim}\dim_R M \) infinity if no such an integer exists. For \(S^{op}\)-modules, we may define such a dimension similarly.

Let \(M \) be in \(\text{mod}R \) and \(i \geq 0 \). We say that the \textit{grade} of \(M \) with respect to \(U \), written \(\text{grade}_U M \), is at least \(i \) if \(\text{Ext}_R^{0 \leq j < i}(M, U) = 0 \). We say that the \textit{strong grade} of \(M \) with respect to \(U \), written \(\text{s.grade}_U M \), is at least \(i \) if \(\text{grade}_U X \geq i \) for any finitely generated \(R\)-submodule \(X \) of \(M \) (cf. [8]). The following result was proved in [8, Theorem 17.1.11] when \(R \) and \(S \) are two-sided Noetherian rings. Because the argument there remains valid in the setting here, we omit it.

Theorem 2.3. Let \(R \) be a left Noetherian ring, \(S \) a right Noetherian ring and \(RU \) a generalized tilting module with \(S = \text{End}(RU) \). Then for any \(n \geq 0 \), the following statements are equivalent.
(1) \(U\lim \dim_R E_i \leq i \) for any \(0 \leq i \leq n - 1 \).

(2) \(\text{fd}_S E_i \leq i \) for any \(0 \leq i \leq n - 1 \).

(3) \(\text{s.grade}_U \text{Ext}_R^i(M, U) \geq i \) for any \(M \in \text{mod} \, R \).

(4) \(\text{fd}_{S^{op}} E_i' \leq i \) for any \(0 \leq i \leq n - 1 \).

(5) \(U\lim \dim_{S^{op}} E_i' \leq i \) for any \(0 \leq i \leq n - 1 \).

(6) \(\text{s.grade}_{S^{op}} \text{Ext}_S^i(N, U) \geq i \) for any \(N \in \text{mod} \, S^{op} \).

If one of the equivalent conditions in Theorem 2.3 is satisfied, then \(R \, U \) (equivalent \(U \, S \)) is called \(n \)-Gorenstein ([8, 10]). So a left and right Noetherian ring \(R \) is (Auslander) \(n \)-Gorenstein ([12]) if and only if \(R \, R \) is \(n \)-Gorenstein, and if and only if \(R \, R \) is \(n \)-Gorenstein.

3 Main Results

In this section, we give the proof of Theorem 1.2. We begin with the following

Lemma 3.1. Let \(R \) be a ring and

\[
0 \to K \xrightarrow{f} M \to N \to 0
\]

an exact sequence in \(\text{Mod} \, R \) with \(N \neq 0 \) and \(f \) an essential monomorphism. Then \(\text{Ext}_R^1(X, K) \neq 0 \) for any non-zero \(R \)-submodule \(X \) of \(N \).

Proof. Let \(X \) be a non-zero \(R \)-submodule of \(N \) and \(\alpha : X \hookrightarrow N \) the inclusion. Then we have the following pull-back diagram

\[
\begin{array}{ccc}
0 & \to & 0 \\
| & & | \\
\downarrow & & \downarrow \\
0 & \to & K \\
| & & | \\
\downarrow & & \downarrow \\
W & \to & X & \to & 0 \\
\| & \| & \| & \| \\
\| & \| & \| & \| \\
\| & \| & \| & \| \\
\| & \| & \| & \| \\
M & \xrightarrow{f} & N & \to & 0 \\
\| & \| & \| & \| \\
\| & \| & \| & \| \\
\| & \| & \| & \| \\
\| & \| & \| & \| \\
Coker \alpha & \xrightarrow{=} & Coker \alpha & \to & 0
\end{array}
\]

We claim that the upper row does not split. Otherwise, if it splits, then \(K \) is isomorphic to a non-trivial direct summand of \(W \). So \(K \) is not isomorphic to an essential submodule of \(W \), and hence \(K \)
is not an essential submodule of M. It contradicts that f is an essential monomorphism. The claim is proved. Thus we have $\text{Ext}^1_R(X,K) \neq 0$.

From now on, R is a left Noetherian ring, S is a right Noetherian ring and RU is a generalized tilting module with $S = \text{End}(RU)$. By [9, Theorem 2.7], we have that $\text{id}_RU = \text{id}_{S^op}U$ provided both of them are finite.

Lemma 3.2. If $\text{id}_RU = n$, then for any non-zero R-submodule X of E_n, we have $\text{Ext}^n_R(X,U) \neq 0$.

Proof. Because $\text{id}_RU = n$, we have the following exact sequence

$$0 \to K_{n-1} \to E_{n-1} \to E_n \to 0$$

in $\text{Mod } R$ with $K_{n-1} \to E_{n-1}$ an essential monomorphism. Let X be a non-zero R-submodule of E_n. Then $\text{Ext}^1_R(X,K_{n-1}) \neq 0$ by Lemma 3.1. Thus we have $\text{Ext}^n_R(X,U) \cong \text{Ext}^1_R(X,K_{n-1}) \neq 0$.

By Lemma 3.2, we have the following

Proposition 3.3.

1. If $\text{id}_RU = n(\geq 1)$, then E_0 and E_n have no isomorphic non-zero direct summands.

2. If $\text{id}_RU = \text{id}_{S^op}U = n$, then $\text{pd}_{S^*}E = n$ for any non-zero direct summand E of E_n.

Proof. (1) Assume that $E \neq 0$ is an indecomposable direct summand of E_0 and E is isomorphic to a direct summand of E_n. Then E is the injective envelope of some finitely generated non-zero R-submodule Y of E by [14, Theorem 2.4]. Since U is an essential submodule of E_0, we have $X := U \cap Y \neq 0$. From the exact sequence

$$0 \to X \to U \to U/X \to 0,$$

we get the following exact sequence

$$0 = \text{Ext}^n_R(U,U) \to \text{Ext}^n_R(X,U) \to \text{Ext}^{n+1}_R(U/X,U).$$

Because $\text{id}_RU = n$, we have $\text{Ext}^{n+1}_R(U/X,U) = 0$. It induces that $\text{Ext}^n_R(X,U) = 0$. On the other hand, because $0 \neq X < E \to E_n$, we have $\text{Ext}^n_R(X,U) \neq 0$ by Lemma 3.2. It is a contradiction.

(2) Let E be a non-zero direct summand of E_n. Then $\text{Ext}^n_R(E,U) \neq 0$ by Lemma 3.2. Because $\text{id}_{S^op}U = n$, we have $\text{id}_{S^*}E \leq n$ by [9, Lemma 2.6(1)]. Because $\text{id}_RU = n$, we have $\text{pd}_{S^*}E \leq n$ by [9, Theorem 2.11]. If $\text{pd}_{S^*}E = m < n$, then by [9, Theorem 2.9], there exists an exact sequence

$$0 \to U_m \to \cdots \to U_1 \to U_0 \to E \to 0$$

5
in Mod R with all U_i in Add$_R U$, where Add$_R U$ is the full subcategory of Mod R consisting of modules isomorphic to direct summands of direct sums of copies of rU. So Ext$_R^n(E,U) \cong \text{Ext}_{R}^{n-m}(U_m,U) = 0$ by [9, Proposition 2.2(2)]. It is a contradiction. Thus we have pd$_S^*E = n$.

Lemma 3.4. The following statements are equivalent.

(1) There exists $0 \neq M \in \text{mod } R$ such that Ext$_R^{\geq 0}(M,U) = 0$.

(2) There exists an exact sequence

$$0 \to Q_0 \xrightarrow{k_1} Q_1 \xrightarrow{k_2} Q_2 \to \cdots$$

in mod S^{op} with all Q_i in add U_S, such that Ext$_{S^{op}}^1(L_1,U) \neq 0$ and Ext$_{S^{op}}^i(L_i,U) = 0$ with $i \geq 2$, where $L_i = \text{Coker } k_i$ for any $i \geq 1$.

Proof. (2) \Rightarrow (1) By (2), we get the following exact sequence

$$\cdots \to Q_2^* \xrightarrow{k_2^*} Q_1^* \xrightarrow{k_1^*} Q_0^* \to M \to 0$$

in mod R, where $M = \text{Coker } k_1^*$. Then $M \cong \text{Ext}_{S^{op}}^1(L_1,U) \neq 0$ by assumption. Consider the following commutative diagram

$$\begin{array}{ccccccccc}
0 & \to & Q_0 & \xrightarrow{k_1} & Q_1 & \xrightarrow{k_2} & Q_2 & \to & \cdots \\
& & \downarrow{\cong} & \downarrow{\cong} & \downarrow{\cong} & \downarrow{\cong} & \downarrow{\cong} & & \\
0 & \to & M^* & \xrightarrow{k_1^{**}} & Q_0^{**} & \xrightarrow{k_2^{**}} & Q_1^{**} & \to & \cdots
\end{array}$$

Because the upper row is exact by assumption, so is the lower row. It implies Ext$_R^{\geq 0}(M,U) = 0$.

(1) \Rightarrow (2) Let $0 \neq M \in \text{mod } R$ with Ext$_R^{\geq 0}(M,U) = 0$ and let

$$\cdots \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0$$

be an exact sequence in mod R with all P_i projective. Then we get the following exact sequence

$$0 \to P_0^* \xrightarrow{d_0^*} P_1^* \xrightarrow{d_1^*} P_2^* \to \cdots$$

(3.1) in mod S^{op} with all P_i^* in add U_S. Notice that $P_i \cong P_i^{**}$ naturally for any $i \geq 0$, so the sequence

$$\cdots \to P_2^{**} \xrightarrow{d_2^{**}} P_1^{**} \xrightarrow{d_1^{**}} P_0^{**}$$

in mod R is exact. Set $L_i := \text{Coker } d_i^*$ for any $i \geq 1$. Then Ext$_{S^{op}}^1(L_1,U) \cong M \neq 0$ and Ext$_{S^{op}}^i(L_i,U) = 0$ for any $i \geq 2$, and so (3.1) is the desired exact sequence.
Following [4], an injective resolution

\[0 \to N \xrightarrow{ε_0} I_0 \xrightarrow{ε_1} I_1 \xrightarrow{ε_2} I_2 \to \cdots \]

of a module \(N \) in \(\text{Mod} S^{\text{op}} \) is said to have a redundant image if some \(\text{Im} ε_n = \oplus_{j=1}^m W_j \) such that each \(W_j \) is isomorphic to a direct summand of some \(\text{Im} ε_i \) with \(i_j \neq n \). It is clear that the minimal injective resolution of \(N_S \) has a redundant image if \(\text{id}_{S^{\text{op}}} N < \infty \).

Lemma 3.5. If \(U_S \) has an injective resolution with a redundant image, then \(M = 0 \) for any \(M \in \text{mod} R \) with \(\text{Ext}_R^{2}(M, U) = 0 \).

Proof. Let \(M \in \text{mod} R \) with \(\text{Ext}_R^0(M, U) = 0 \). If \(M \neq 0 \), then by Lemma 3.4 and its proof, we get an exact sequence

\[0 \to Q_0 \xrightarrow{k_1} Q_1 \xrightarrow{k_2} Q_3 \to \cdots \]

in \(\text{mod} S^{\text{op}} \) with all \(\text{Q}_i \) in \(\text{add} U_S \) such that \(\text{Ext}_{S^{\text{op}}}^1(L_1, U) \cong \text{Ext}_{S^{\text{op}}}^1(L_n, U) = 0 \) and \(\text{Ext}_{S^{\text{op}}}^1(L_1, U) = 0 \) for any \(i \geq 2 \).

Because \(U_S \) has an injective resolution with a redundant image, there exists an injective resolution

\[0 \to U_S \xrightarrow{α_n} I_0 \xrightarrow{α_1} I_1 \xrightarrow{α_2} I_2 \to \cdots \]

of \(U_S \) in \(\text{Mod} S^{\text{op}} \) with some \(\text{Im} α_n = \oplus_{j=1}^m W_j \) such that each \(W_j \) is isomorphic to a direct summand of some \(\text{Im} α_i \) with \(i_j \neq n \). Then we have

\[\text{Ext}_{S^{\text{op}}}^1(L_1, U) \cong \text{Ext}_{S^{\text{op}}}^1(L_n, U) \cong \text{Ext}_{S^{\text{op}}}^1(L_n, \text{Im} α_n) \cong \oplus_{j=1}^m \text{Ext}_{S^{\text{op}}}^1(L_n, W_j). \]

Since

\[\text{Ext}_{S^{\text{op}}}^1(L_n, \text{Im} α_{i_j}) \cong \text{Ext}_{S^{\text{op}}}^{i_j+1}(L_n, U) = 0 \]

by the above argument, we have \(\text{Ext}_{S^{\text{op}}}^1(L_n, W_j) = 0 \) for any \(1 \leq j \leq m \). It follows that \(\text{Ext}_{S^{\text{op}}}^1(L_1, U) = 0 \), a contradiction. Consequently we conclude that \(M = 0 \).

We introduce the notion of Gorenstein modules as follows.

Definition 3.6. We called \(R U \) (resp. \(U_S \)) Gorenstein if \(U \)-lim.dim \(E_i \leq i \) (resp. \(U \)-lim.dim \(S_{S^{\text{op}}} \) \(E'_i \leq i \)) for any \(i \geq 0 \).

By Theorem 2.3, we have that \(R U \) is Gorenstein if and only if \(U_S \) is Gorenstein, and if and only if \(R U \) (equivalent \(U_S \)) is \(n \)-Gorenstein for all \(n \). Following Theorem 2.3 and [16, Theorem 3.6], we know that the notion defined above is a non-commutative version of that of Gorenstein modules in [16]. The following proposition is useful in proving the main result.
Proposition 3.7. Let RU be a Gorenstein module with $\text{id}_RU = \text{id}_{S^{op}}U = n$. Then $\text{Ext}_S^n(N, U) \in \text{mod} \ R$ is Artinian for any $N \in \text{mod} \ S^{op}$.

Proof. Let $X \subseteq Y$ be left R-submodules of $\text{Ext}_S^n(N, U)$. Then by Theorem 2.3, we have

$$\text{Ext}_R^{0 \leq i < n}(X, U) = 0 = \text{Ext}_R^{0 \leq i < n}(Y, U).$$

So from the exact sequence

$$0 \to X \to Y \to Y/X \to 0,$$

we get $\text{Ext}_R^{0 \leq i < n}(Y/X, U) = 0$ and the following exact sequence

$$0 \to \text{Ext}_R^n(Y/X, U) \to \text{Ext}_R^n(Y, U) \to \text{Ext}_R^n(X, U) \to 0.$$

Put $A_0 := \text{Ext}_S^n(N, U)$ and let

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots$$

be a descending chain of left R-submodules of A_0. Then from the commutative diagram with exact rows

$$\begin{array}{cccccc}
0 & \to & A_{i+1} & \to & A_0 & \to & A/A_{i+1} & \to & 0 \\
0 & \to & A_i & \to & A_0 & \to & A/A_i & \to & 0,
\end{array}$$

we get the following commutative diagram with exact rows

$$\begin{array}{cccccc}
0 & \to & \text{Ext}_R^n(A_0/A_i, U) & \to & \text{Ext}_R^n(A_0, U) & \to & \text{Ext}_R^n(A_i, U) & \to & 0 \\
0 & \to & \text{Ext}_R^n(A_0/A_{i+1}, U) & \to & \text{Ext}_R^n(A_0, U) & \to & \text{Ext}_R^n(A_{i+1}, U) & \to & 0.
\end{array}$$

We can regard $\text{Ext}_R^n(A_0/A_i, U)$ as a right S-submodule of $\text{Ext}_R^n(A_0, U)$. Then the following sequence is the ascending chain of right S-submodules of $\text{Ext}_R^n(A_0, U)$:

$$\text{Ext}_R^n(A_0/A_1, U) \subseteq \text{Ext}_R^n(A_0/A_2, U) \subseteq \cdots \subseteq \text{Ext}_R^n(A_0, U). \quad (3.2)$$

Since $A_0 \in \text{mod} \ R$, $\text{Ext}_R^n(A_0, U) \in \text{mod} \ S^{op}$ is Noetherian. So (3.2) terminates at some step m. Then from the exact sequence

$$0 \to A_m/A_{m+1} \to A_0/A_{m+1} \to A_0/A_m \to 0,$$

we get the following exact sequence

$$\text{Ext}_R^n(A_0/A_m, U) \xrightarrow{\cong} \text{Ext}_R^n(A_0/A_{m+1}, U) \to \text{Ext}_R^n(A_m/A_{m+1}, U) \to 0.$$
and $\text{Ext}^n_R(A_m/A_{m+1}, U) = 0$. Then by the above argument, we have that $\text{Ext}^n_R(A_m/A_{m+1}, U) = 0$. Because $\text{id}_R U = n$, we have $\text{Ext}^n_R(A_m/A_{m+1}, U) = 0$. Because $\text{id}_{S^n} U = n$, by Lemma 3.5 we have that $A_m/A_{m+1} = 0$ and $A_m = A_{m+1}$. Thus $A_0(= \text{Ext}^n_{S^n}(N, U))$ is an Artinian left R-module.

By Proposition 3.7, we get the following

Corollary 3.8. Let $R U$ be a Gorenstein module with $\text{id}_R U = \text{id}_{S^n} U = n$ and $N \in \text{mod} S^{op}$. Then we have

1. $\text{Ext}^n_{S^n}(N, U)$ embeds in $E^{(t)}_n$ for some $t \geq 1$.

2. If M is a non-zero R-submodule of $\text{Ext}^n_{S^n}(N, U)$, then $\text{Ext}^n_R(M, U) \neq 0$.

Proof. (1) Let $N \in \text{mod} S^{op}$. Then $\text{Ext}^n_{S^n}(N, U) \in \text{mod} R$ embeds in a finite direct sum of copies of $\bigoplus_{i=0}^{n-1} E_i$ by [8, Lemma 17.2.5]. On the other hand, by [3, Proposition VI.5.3] and Theorem 2.4, we have

$$\text{Hom}_R(\text{Ext}^n_{S^n}(N, U), E_i) \cong \text{Tor}^n_R(N, * E_i) = 0$$

for any $0 \leq i \leq n - 1$. So there exists some $t \geq 1$ such that $\text{Ext}^n_{S^n}(N, U)$ embeds in $E^{(t)}_n$.

(2) Let M be a non-zero R-submodule of $\text{Ext}^n_{S^n}(N, U)$. Because we have the following exact sequence

$$0 \rightarrow K^{(t)}_{n-1} \rightarrow E^{(t)}_{n-1} \rightarrow E^{(t)}_n \rightarrow 0$$

in $\text{Mod} R$ with $K^{(t)}_{n-1} \rightarrow E^{(t)}_{n-1}$ an essential monomorphism, by (1) and Lemma 3.1 we have that $\text{Ext}^n_R(M, U)^{(t)} \cong \text{Ext}^1_R(M, K^{(t)}_{n-1}) \cong \text{Ext}^1_R(M, K^{(t)}_{n}) \neq 0$ and $\text{Ext}^n_R(M, U) \neq 0$. □

We now are in a position to prove the following

Theorem 3.9. Let $R U$ be a Gorenstein module with $\text{id}_R U = \text{id}_{S^n} U = n$. Then any non-zero submodule of E_n has a non-zero Artinian submodule.

Proof. Let V be a non-zero submodule of E_n and E a non-zero indecomposable direct summand of the injective envelope Q of V. Then E is the injective envelope of some finitely generated non-zero R-submodule X of E by [14, Theorem 2.4]. By Lemma 3.2, we have $\text{Ext}^n_R(X, U) \neq 0$. Let I be an injective cogenerator for $\text{Mod} S^{op}$. Then by [3, Proposition VI.5.3], we have

$$\text{Tor}^n_R(\ast I, X) \cong \text{Hom}_{S^{op}}(\text{Ext}^n_R(X, U), I) \neq 0.$$

Because $\text{id}_{S^{op}} \ast I = \text{id}_R U = n$ by [9, Lemma 2.6(2)] and assumption, the inclusion $X \hookrightarrow E$ induces a monomorphism $\text{Tor}_n^R(\ast I, X) \hookrightarrow \text{Tor}_n^R(\ast I, E)$. It yields $\text{Tor}_n^R(\ast I, E) \neq 0$. By [11, Lemmas 5.1(c) and
4.1], we have that \(\text{Tor}^R_{\leq 1}(I, U) = 0 \) and both \(I \) and \(E \) are in the Bass class with respect to \(RUS \). So we get the following isomorphisms

\[
\begin{align*}
\text{Tor}^S_n(I, \ast E) & \cong \text{Tor}^S_n(I \otimes_R U, \ast E) \quad \text{(by [11, Lemma 4.1])} \\
& \cong \text{Tor}^R_n(\ast I, E) \quad \text{(by [11, Theorem 6.4(c)])},
\end{align*}
\]

and hence \(\text{Tor}^S_n(I, \ast E) \neq 0 \). Let \(\{N_i\} \) be the set of all finitely generated right \(S \)-submodules of \(I \). Because \(I = \lim_{\to} N_i \) and the functor Tor commutes with \(\lim_{\to} \) by [15, Example 5.32(iii) and Proposition 7.8], there exists some \(N_i \) such that \(\text{Tor}^S_n(N_i, \ast E) \neq 0 \). Then by [3, Proposition VI.5.3] again, we have

\[
\text{Hom}_R(\text{Ext}^{\ast}S_{\text{op}}(N_i, U), E) \cong \text{Tor}^S_n(N_i, \ast E) \neq 0.
\]

So there exists a non-zero homomorphism \(f : \text{Ext}^{\ast}S_{\text{op}}(N_i, U) \to E \) in \(\text{Mod} R \). By Proposition 3.7, \(\text{Ext}^{\ast}S_{\text{op}}(N_i, U) \in \text{mod} R \) is Artinian. Thus as an \(R \)-quotient module of \(\text{Ext}^{\ast}S_{\text{op}}(N_i, U) \), \(\text{Im } f \) is a non-zero Artinian \(R \)-submodule of \(E(< Q) \). Because \(V \) is essential in \(Q \), we have that \(V \cap \text{Im } f \) is a non-zero Artinian \(R \)-submodule of \(V \).

Theorem 1.2 is a special case of the following result.

Corollary 3.10. Let \(R\U \) be a Gorenstein module with \(\text{id}_R U = \text{id}_{S_{\text{op}}} U = n \). Then any non-zero \(R \)-submodule of \(E_n \) has an essential socle.

Proof. By Theorem 3.9, we have that any non-zero \(R \)-submodule of \(E_n \) has a non-zero Artinian \(R \)-submodule. Now the assertion follows from [1, Corollary 9.10].

The second assertion in the following result is a supplement to Proposition 3.3(1).

Corollary 3.11. Let \(R\U \) be a Gorenstein module with \(\text{id}_R U = \text{id}_{S_{\text{op}}} U = n \). Then we have

1. Any non-zero direct summand of \(E_n \) is a direct sum of the injective envelopes of some simple left \(R \)-modules.

2. If \(n \geq 1 \) and \(S \) is further a right Artinian ring, then \(\oplus_{i=0}^{n-1} E_i \) and \(E_n \) have no isomorphic non-zero direct summands.

Proof. (1) By Corollary 3.10 and [14, Proposition 2.1].

(2) If \(S \) is a right Artinian ring, then \(\text{pd}_S(\oplus_{i=0}^{n-1} E_i) = \text{fd}_S(\oplus_{i=0}^{n-1} E_i) \leq n - 1 \) by Theorem 2.3. So \(\text{pd}_S(\ast E) \leq n - 1 \) for any direct summand \(E' \) of \(\oplus_{i=0}^{n-1} E_i \). On the other hand, we have \(\text{pd}_S(\ast E) = n \) for any non-zero direct summand \(E \) of \(E_n \) by Proposition 3.3(2). Thus the assertion follows.
Acknowledgements. This research was partially supported by National Natural Science Foundation of China (Grant Nos. 11571164, 11401488, 11671174) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

