Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin

Xi-Zhu Wu¹, Song Liu², Zhi-Hua Zhou¹

¹Nanjing University
²University of Bristol
Problem setting

- Flu detection
Problem setting

- Flu detection
- Merge local models, not local datasets
Our HMR method

- Multiple heterogeneous models
- Trained separately
- Different label spaces

• Calibrate confidence scores
• By optimizing MPMC-margin

• One global model
• On full label space
Q: How to measure the global behavior?
A: Multiparty multiclass (MPMC) margin.

Q: How to optimize the global behavior?
A: The HMR method, which maximizes MPMC-margin. by modifying local models, without merging local datasets.
Experiments

- Toy example on LR/SVM/GBDT
 - Heterogeneous learning models
 - Selectively exchanged 20 examples
 - Nearly perfect performance

(a) Five-class data
(b) Iter 0: 37.90%
(c) Iter 1: 71.60%
(d) Iter 5: 85.10%
(e) Iter 10: 95.60%
(f) Iter 20: 99.30%
Experiments

• Toy example on LR/SVM/GBDT
 • Heterogeneous learning models
 • Selectively exchanged 20 examples
 • Nearly perfect performance

• Benchmarking on fashion-MNIST
 • Tested various data partitions setting
Experiments

• Toy example on LR/SVM/GBDT
 • Heterogeneous learning models
 • Selectively exchanged 20 examples
 • Nearly perfect performance

• Benchmarking on fashion-MNIST
 • Tested various data partitions setting

• Multi-lingual handwriting experiment
 • 1600+ classes, 94.32% accuracy
 • Only exchanged 300 out of 420k examples (about 0.07% data)
Conclusion

Q: How to measure the multiparty global behavior?
A: Multiparty multiclass margin

Q: How to optimize the global behavior?
A: The HMR method, which reuses local models and max margin

Thank you!

Mail: wuxz@lamda.nju.edu.cn
Code: https://github.com/YuriWu/HMR

Poster #139
2019-06-11