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Abstract—Heterogeneous cellular networks use small base
stations, such as femtocells and WiFi APs, to offload traffic from
macrocells. While network operators wish to globally balance the
traffic, users may selfishly select the nearest base stations and
make some base stations overcrowded. In this paper, we propose
to use an auction-based algorithm — Femto-Matching, to achieve
both load balancing among base stations and fairness among
users. Femto-Matching optimally solves the global proportional
fairness problem in polynomial time by transforming it into
an equivalent matching problem. Furthermore, it can efficiently
utilize the capacity of randomly deployed small cells. Our trace-
driven simulations show Femto-Matching can reduce the load of
macrocells by more than 30% compared to non-cooperative game
based strategies.

I. INTRODUCTION

In recent years, there is a trend for wireless cellular net-
works to incorporate different types of accessing technologies
to meet the fast growing mobile traffic demands [1]. Unlike
traditional cellular networks, where a single-tier of macrocells
provides coverage over a large area, next generation wireless
networks utilize multiple tiers of small Base Stations (BSs),
including microcells, picocells, femtocells and WiFi APs, to
offload mobile traffic from marcocells. In these Heterogeneous
Networks (HetNets), a single mobile device can be covered by
several BSs at the same time. For example, it is not uncommon
to have more than five WiFi APs available to mobiles in urban
areas [2]. How to select the right BS among all these nearby
BSs for users becomes a critical issue for HetNets.

There are several challenges that are unique to the serving
BS selection problem in HetNets. Firstly, users and network
operators have misaligned objectives. Users wish to be associ-
ated with a BS which can provide the highest data throughput.
However, decisions based on users’ preference usually lead
to imbalanced network traffic, i.e., some base stations are
overcrowded while others remain idle. To improve network
efficiency, network operators would like to globally balance
the traffic. This may be unfair to some users as they are forced
to be associated with a less preferred BS. Due to the mobility
of users, these temporarily “bad” choices may lead to long-
term benefits in average throughput. However, most existing
association algorithms utilize local preferences over a static
snapshot of the network topology [3], [4], which prevents the
possibility of long-term traffic balancing.

Secondly, small cell base stations are randomly deployed.
Unlike macrocells which are deployed with careful planning,
small cell base stations, such as femtocell and WiFi APs, are
often deployed by users in an ad-hoc manner. This leads to

intrinsic spatial imbalance in network resource provisioning,
i.e., certain areas in the network may have more small cells
than others. To globally balance the traffic, users should be
“pushed” towards regions with higher small cell density, so
that their traffic gets a better chance to be offloaded by small
cells. However, users and small cells only have limited local
views on network topology. Therefore, it is hard to achieve
global balance through distributed algorithms.

In this paper, we design an auction-based algorithm, called
Femto-Matching, to address the above challenges. We show
that we can achieve global optimality by carefully designing
the auction mechanism. In our algorithm, the load of a BS is
reflected by its price and users evaluate BSs based on how
much improvement that the best BS can provide over the
secondary choice. We prove that our design leads to an optimal
solution in the sense of global proportional fairness.

One important observation gained from our design and
analysis is that global optimization is crucial to the offloading
efficiency for HetNets. With global matching schemes, it is
possible to fully utilize the available resources provided by ran-
domly deployed small BSs. In this way, the load of macrocells
can be greatly reduced so that the network deployment cost
is minimized. QOur trace-driven simulations show that Femto-
Matching can reduce the load of macrocells by more than 30%
compared to non-cooperative game based strategies.

The main contributions of this work are as follows:

— We propose a new auction-based algorithm which can
achieve the optimal solution for the proportional fair user
association problem.

— We are the first to study offloading efficiency in random
networks under different user association strategies. We prove
that the ratio of users that cannot be offloaded by the optimal
matching scheme is O()\;l/ 2R_1) for homogenous Poisson
Point Process, where A is the density of femtocells and R is
the communication range of femtocells.

II. RELATED WORK

The load balancing problem in HetNets has been inten-
sively studied in recent years [5]. One of the basic approaches
to increase the number of users served by small cells is to
introduce SINR Biasing, which encourages users to associate
with a small cell even when the perceived SINR of the
small cell is lower than the SINR of the macrocell [6], [7].
Global optimization algorithms are also proposed in [6], [8],
[9], where the problem is formulated as a mixed integer



programming and solved through linear relaxation or brute-
force searching.

Unlike above global optimization approaches, game theory
based algorithms utilize user preference to select the best
BS in a distributed way. It is shown in [3] that the BS
selection game converges to Nash equilibria when there is
only one class of radio access technology. However, only
carefully designed game strategies can converge in case there
are multiple classes of BSs in the network. When both the
preference of the user and the small cells are considered,
a college admission algorithm can be used to find a stable
matching between users and femtocells [4]. Unfortunately,
these distributed algorithms do not provide any performance
guarantee for randomly deployed networks.

III. MOTIVATION AND SYSTEM MODEL
A. Motivation

As a motivating example, Fig. 1 gives a snapshot of user
association plan for randomly distributed users and BSs in a
70x70 meters area. To simplify the illustration, we only draw
a single tier of femtocells, where each femtocell can serve up
to 6 users. Fig. 1(a) shows the result when users select serving
BS based on local preference, e.g., they try to associate with
the BS which provides the highest throughput as in [3], [4]. In
the lower-right region of Fig. 1(a), there is a cluster of users
not associated with any femtocells, since all nearby femtocells
do not have any vacancy. Although there are abundant lightly
loaded femtocells in the upper-right region, they cannot serve
these “orphan” users due to the limited communication range.
This imbalanced traffic load for femtocells leads to higher
traffic burdens on the next tier of BSs, i.e., these “orphan”
users have to turn to the microcell tier or the marcocell tier
for help.

Fig. 1(b) shows a more balanced association plan con-
structed through global optimization algorithm. In this case,
lightly loaded femtocell can take over users associated with
heavily loaded femtocells in a cascading way so that more
users can be served by femtocells, as illustrated in the red
rectangle of Fig. 1(b). Some of these femtocells serve users
outside their Voronoi cells. This means the global optimization
solution forces users to accept a less preferred choice by
associating them to a femtocell which is not the nearest one to
them. Existing association algorithms, such as SINR Biasing
[7] or Game Theory based algorithm [3], cannot sacrifice the
welfare of some users to achieve global optimality.

The difference between the user association plans in
Fig. 1(a) and 1(b) leads to drastic difference in the load of
macrocells. For example, femtocells serve about 80% users in
Fig. 1(a). In a three tier HetNet which consists of femtocells,
microcells and macrocells, the marcocell tier needs to serve
(1—80%) x (1—80%) = 4% users, assuming the microcell tier
can also offload 80% users. If the offloading ratio is improved
to 95% as in Fig. 1(b), the macrocell only needs to serve
0.25% of all users, which is an order of magnitude less than the
previous case. In consequence, fewer costly macrocells need to
be deployed or upgraded. Therefore, achieving an offloading
ratio close to 100% is crucial for reducing the network cost.
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Fig. 1. User association for randomly deployed femtocells (femtocells: blue
stars, users: red dots, association relationship: red or green lines).

B. System Model

Hinted by the observations in the previous section, we
formulate the user association problem as a global optimization
problem. Consider a HetNet which consists of N BSs in the BS
set B and M users in the user set /. Base Stations can be either
macrocells, picocells, femtocells or WiFi APs. Different types
of BSs are characterized by their Radio Access Technologies
(RATs), transmission powers and backhaul bandwidths. We
assume that users can switch between multiple BSs, but they
can only associate with one BS at the same time, due to
the capability limitations of mobile devices. If a user has
multiple interfaces that can operate independently, we treat
each interface as a separate user.

We assume that the achievable throughput for a given user
is determined by two factors, the transmission bit rate and re-
sources allocated to the user. Firstly, the wireless transmission
bit rate for a given user is determined by the received SINR
of the serving BS. As instantaneous SINR perceived by the
user is time-varying due to slow/fast fading and transmission
of nearby BSs/users, we use the long-term average rate to
characterize the achievable rate. In the following discussions,
we assume the average rate that user ¢ can receive from BS j is
;5. Secondly, the throughput for user ¢ is also determined by
the amount of wireless resources that BS j allocates for user .
By wireless resources, we mean time slots in TDMA systems,
subcarriers in OFDM systems or Resource Blocks (RBs) in
LTE. We use c¢;; to denote the proportion of resources that
BS j allocates to user i. Combining these two factors, the
throughput of user 7 under BS j can be written as c;;7;;.

The goal of the user association problem for HetNet is
to find an optimal association scheme for each user i along



TABLE L. NOTATIONS
Symbol | Description
Tij average transmission rate of user ¢ under BS j
Cij resource allocated by BS j to user ¢
a;j association indicator for user ¢ and BS j
n; the number of users covered by BS j
K; the number of users associated to BS j
K maximum number of users that femtocells can serve
Af the density of femtocells
Au the density of users
n the ratio of users served by femtocells

with a resource allocation plan for each base station j so
that the overall system utility is maximized. We choose the
logarithm function as our utility function, i.e., user ¢ has utility
of log(z;) when the throughput for user ¢ is z;. It is well known
that logarithm utility functions lead to proportional fairness
among users and it gives a balanced solution for both fairness
and system efficiency [10]. In practice, Proportional Fairness
Scheduling (PFS) is also a widely used scheduling algorithm
for LTE eNBs [11].

We define the Proportional Fair User Association (PFUA)

problem as:
max >, log (Z] ciﬂ'ijaij> , )
s.t. >.ci; <1 VjeB, 2)
Ya; <1 Vied, 3)
a;; €{0,1}, ¢;; >0 Yiel,jeB. )

In the above optimization problem, a;; is the association
indicator for user ¢ and BS j. If user 7 is associated to BS
j, we set a;; = 1 and otherwise we set a;; = 0. Therefore,
> ¢ijrijai; in Bq. (1) is the total throughput that user i can
get from the serving BS. Constraint (2) ensures that BS j will
not over-utilize its resources. Constraint (3) ensures that each
user can only be associated to one BS. The symbols used in
this paper are summarized in Table I.

IV. ALGORITHM DESIGN
A. Equivalent Matching Problem

PFUA is a mixed integer programming problem where a;;
can only take integer values. Although a general extention
of the PFUA — the GPF1 problem in [12] has been proven
to be NP-hard, the hardness of PFUA is not known until
recently. Most existing work on this topic uses two types of
relaxations to solve this problem approximately. One way is
to allow users to associate with multiple BSs at the same
time, so that a;; becomes a continuous variable [13], [6], [8]
and the solution can be approximated via rounding the result
of the relaxed convex optimization problem. The other way
is to fix the number of users that each BS serves [12], [9].
In this way, the optimal throughput for each user-BS pair is
also fixed, so that the problem can be directly reduced to a
maximum weighted bipartite matching problem. The optimal
solution can then be found by exhaustively searching over
all possible combinations on the user number for each BS.
While preparing the camera ready version of this paper, we
found that a parallel work by Prasad et al. also proposed to
use virtual BS based matching scheme to optimally solve the
PFUA problem [14], [15]. Compared to their work, our auction
based solution reveals structure of this problem and leads to a
naturally distributed algorithm.

PFUA can be solved in polynomial time by casting the
problem into a matching problem without fixing the number
of users in each BS. We divide PFUA into two subproblems:

1.) Optimize resource allocation for a single BS

The goal of this subproblem is to find the optimal propor-
tional fair share c;; when there are K; users associated to BS
j. This problem can be easily solved as the optimal resource
allocation has a closed form solution of ¢;; =1 /K 5 [6], [3].

11.) Find a global optimal association scheme

The goal of this subproblem is to balance the number
of users associated to each BS so that global utility can be
maximized. This subproblem handles the dynamics in K; for
each BS, where larger K; leads to a more crowded BS and
lower throughput for each user. This subproblem is solved by
constructing a bipartite graph using the solution of subproblem
I and finding a maximum weighted matching on it.

Construction of the User Association Graph

Given user set & and BS set B, we construct a bipartite
graph G = (U,V, E) as follows. We introduce user node u;
in the first vertex set U for every user ¢ € Y. We introduce n;
virtual BS (VBS) nodes v} v 4.,1)7’ in the second vertex
set V for every BS j € i? where n; equals the number of
users w1th1n communication range of BS j. We add an edge
(ug, 0! ) between u; and v,’-ﬂ k=1,...,n;, with weight of:

_ 1)k—1,.. .
wh; = log (%) VE, (5)

when user ¢ is within the communication range of BS j.

As an example, consider the network in Fig. 2(a), which
has four users and two BSs with communication rates shown
beside the corresponding links. Since there are three users U1,
U2 and U3 within BS1’s communication range, we split BS1
to three VBS nodes v, v? and v} in G. The VBS nodes are
connected to user nodes with different weights to account for
the dynamics in the number of users associated to the given
BS.

An intuitive explanation of this construction is as follows.
When the first user, say Ul, is associated to BS1, the cor-
responding user node u; will be matched to vi with edge
weight of log ;. This weight is equal to the utility for Ul,
as BS1 will allocate all its resources to Ul. When a new user
U2 is associated with BS1, the proportional fairness scheduler
will equally divide the resource of BS1 between Ul and
U2. Therefore, they get utility of log(r11/2) and log(ra1/2),
respectively. The marginal utility gain for adding U2 is:

log(r11/2) +1log(ra1/2) — logryy = log(ra1/4),  (6)

which is equal to the edge weight between uy and v?. By
matching the kth user associated to BS1 to VBS node v, we
actually keep track of the marginal utility gain that the user
brings to BS1. In this way, we can handle the changing number
of associated users in each BS and achieve global optimality
in utility.

To prove the equivalence of these two problems, we first
use the following lemma to show that maximum weighed
matching on a subgraph of user association graph can find the
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Fig. 2. Bipartite graph construction for user association problem.

optimal solution for subproblem I: optimal resource allocation
for a single BS.

Lemma 1: The maximum utility sum for BS j, when
K users ji1,ja,...,jK,; are associated to BS j is equal to
the weight for maximum weighted matching on a subgraph
G = (U,V',E') of G, induced by the node set U =

J

o ) P g1 2
{ujl,ujz,...,uﬂ\,]}, V= A{vj,v5,...,v;

Proof: See Appendix A for the proof of Lemma 1. H

Lemma 1 leads to the following Theorem:

Theorem 1: The maximum utility sum of the PFUA prob-
lem in Eq. (1)—(4) is equal to the weight of maximum weighted
matching on the constructed user association graph G.

Proof: See Appendix B for the proof of Theorem 1. W

Complexity Analysis
For a network with N Base Stations and M users, the
computational cost for constructing the user association graph
is O(M?N) and extracting the association plan from the
matching result takes at most O(M) time. There are O(M N)
VBS nodes and O(M) user nodes in the user association
graph. Thus, it takes O(M3N3) time to solve the maximum
weighted matching problem on the user association graph
using Hungarian Algorithm [16]. Therefore, the overall time
complexity for a centralized algorithm is O(M?3N?). Actually,
this complexity bound is quite loose. As we will show in
Sec.V, usually it is enough to include just O(M) VBS nodes
in the user association graph. The complexity can be reduced
to O(M?) in this case.

B. Distributed Auction-based Algorithm

It is well known that maximum weighted matching problem
can be solved through an auction algorithm in a distributed
way [17]. However, directly applying a general solution leads
to complex interactions between users and BSs. We observe
that the weight wz’-“- in Eq. (5) consists of two parts log r;; and

(k—1)k—1 ’

log *~—&—. The first part logr;; is the rate for users and

the second part log w is the penalty on the number of

users associated with the BS. Therefore, these two parts can
be maintained separately by users and BSs. Using this special
structure of the problem, we design a distributed auction-based
algorithm, called Femto-Matching, as follows:

i) Initialization

In the initialization phase, BSs generates VBS Nodes v;-“

_1\k—1 . .
with price pf = —log (’f;ik) Every user ¢ measures its rates

to neighboring BSs and set the utility for associating with BS
j as c+logr;; where c is a predefined constant which is large
enough to make all utilities larger than initial prices p;‘f LAl
VBSs and users are not assigned in this phase.

ii) Auction

The auction process is divided into multiple rounds. At
the beginning of each round, BS j will announce price;,
which is the minimum price among all of its VBSs, to the
neighboring users. Users will calculate the margin m;;, which
is c4-log r;; —price;. Each unassigned user find the BSs which
provide the highest margin m; and the second highest margin
m}. User ¢ submits bids of value m} — m/ to the BS with
the highest margin. In case of a tie, user ¢ submits bid of a
small value ¢ to one of the BSs. BSs pick the user with the
highest bid as the winner and temporarily assign the winner
to the VBS. The price of this VBS is raised by the amount
of the highest bid and the user previously assigned to this
VBS is unassigned. A new round of auction starts after BSs
announce the new temporary assignment scheme. The price
and temporary assignment announcement can use the broadcast
mechanism provided by wireless networks, so that the number
of interaction messages can be reduced.

iii) Termination
The auction process terminates when the assignment

scheme stops changing. BSs will announce the final assign-
ment scheme to the neighboring users.

For example, consider the network in Fig. 2. Suppose that
we have r{; = 131 = 3, 191 = T30 = 140 = 2 and ¢ = 2.
At the initial state, prices for VBS nodes will be set as the
first row in Table II. Both BS1 and BS2 will announce price
of 0 in the first round. U1’s highest margin mj] is 2 + log3
(associating with v}) and there is no secondary choice for Ul.
So, Ul will submit bid of 2 +log 3 to BS1. Similarly, U2 and
U4 will submit bid of 2+ log2 to BS1 and BS2, respectively.
U3 has two choices and BS1 gives higher margin. So, U3 will
submit bid of 2 + log3 — (2 + log2) = log3/2 to BS1. In
this round, U1 wins the VBS v{, U4 wins the VBS v and the
prices of these VBSs are raised. After the price adjustment,
both BS1 and BS2 announce price of log4 (for v} and v3) in
the second round. In this round, U2 and U3 will both bid for
v2. As the bid submitted by U2 is 2—1log 2 which is larger than
the bid of log3/2 submitted by U3, U2 wins irrespective of
its lower transmission rate compared to U3. In the third round,
U3 will compare the margin provided by v§ and v3 and choose
to associate with BS2. We can verify that this solution actually
maximizes the utility sum in PFUA.

Detailed algorithm for Femto-Matching is shown in Al-
gorithm 1 and 2. Our algorithm uses the Jacobi version of



TABLE II. PRICE FOR VBS IN THE AUCTION SAMPLE Algorithm 2 AuCtiOIl procedure fOr user i
rouonds 1:){ 110?4 : (Pf7/4) 1:)% 1P54 1: Calculate 7;; for each neighboring BS
og og(2 og . : . .
1 2+ 1og3 log 4 log(27/4) 2+ log 2 log 4 2: while Ass1gnment not finalized do ' .
2 2+4log3 2+log2 log 27/4) 2 +1log?2 log 4 3: Colllect price; and temporary assignment from neigh-
3 2+1log3 2+log2 log (27/4) 2 +log2 log (9/2) boring BSs

Algorithm 1 Auction procedure for BS j

1: p? — flog(k_;#, VEk.

2: while Assignment changes do
3. price; < ming {p’; }, announce price;
4 k* < arg mink{p;?}
5
6
7

Collect bid; from neighboring users
winning_user < argmax;{bid;}
Temporarily assign VBS with index £* to the
winning_user and remove the user previously assigned
with VBS £*

8: p;c %pli +bidwinning_user

9:  Announce the new temporary assignment

10: end while

11: Announce the final assignment

the auction where all unassigned users submit their bids in
the same round. It is also possible to use the Gauss-Seidel
version of auction, which allows users to submit bids in an
asynchronous manner.

As Femto-Matching essentially solves the dual problem of
the weighted bipartite matching problem, we can show that the
solution is within Me to the optimal solution in a similar way
as in [17]. Note that the price for the announced VBS increases
by at least € in each round, therefore the maximum number of
rounds for biding is upper bounded by max{c+logr;;} X x/e,
where « is the maximum number of VBS nodes that a BS can
have. By tuning the value of ¢, we can tradeoff between the
convergence time and the approximation ratio.

C. Practical Issues
1) Handling user mobility

One advantage of Femto-Matching is that it can work in
dynamical environments where users keep moving around.
Once the assignment is calculated for a network snapshot,
we can extend the algorithm to handle network dynamics as
follows:

— When a new user joins the network, he can use Algorithm
2 to bid for a VBS under the current set of prices. The
calculation of the new association plan only involves nearby
BSs and users. In case that there is a vacant VBS in the nearby
BS, the new user will be served by the vacant VBS. Otherwise,
the new user may “kickout” one of the existing users and
causes a cascaded handoff which involves multiple users.
There are two ways to reduce the impact of cascaded handoff.
The first one is to balance the vacant VBS by increasing the
price of the last free VBS of each BS. Therefore, the last free
VBS is always reserved for new comers. The other way is
to introduce handoff penalty by increasing the price of VBS
which is assigned to existing users.

— When a user leaves the network, the BS reduces the
price of the VBS associated to that user to the initial value

4:  if not temporarily assigned then

5: m;j < ¢+ logry; — price;, Vj

6: J* < argmaz;{mi;}, m; < max;{m;;}
7: m), < second largest value in m;;

8 if m} —m} > 0 then

9: Submit bid; = m} —m) to BS j*

10: else

11: Submit bid; = ¢ to BS j*

12: end if

13:  end if

14: end while

and asks neighboring users to bid for that VBS. This may also
lead to cascaded reassignments. We can reduce the impact of
this by asking users to be conservative in reassignment, e.g.,
requesting new bids to be larger than a given value.

— When the device moves around and its communication
rate changes, we can treat this case as a simultaneous user
leave and join to get the new association plan.

It is possible to tune the price to reduce the number of
handoffs when user mobility patterns need to be considered.
For example, we can reduce the constant ¢ for a moving user
so that handoff happens only when transmission rate of the
previous serving BS is lower than a given bound.

2) Multiuser diversity gain

Proportional Fairness Scheduling (PFS) implemented in
3G/AG networks can opportunistically schedule a user with
better channel quality to improve the average throughput.
As users experience independent fading and noise conditions,
there is a multiuser diversity gain which can be achieved via
PFS. For Rayleigh Fading channel, the average throughput for
user ¢ is given as r;;/K; X Z,ﬁl +. when there are K users
under a PFS based BS [18]. By defining the multiuser diversity
gain function as g(K;) =>_.7, %, we can set the weight for
edges connect u; to VBS 1)9“ as:

Koy (=D g(R)r;
v = (S ). v

By a similar procedure as in Sec. IV-A, we can show that
our matching algorithm can also achieve the maximum utility
for PFUA with this new weight function. As we can adjust
the weights for each Base Station, our algorithm can work in
HetNets which consist of both PFS based BS and non-PFS
based BS at the same time.

3) Including multiple tiers of BSs

Our solution for PFUA can work for networks with dif-
ferent types of BSs. Small BSs such as femtocells may have
limited service capability so that only a limited number of users
can be associated to them. For these small BSs, we can impose
a bound on the number of VBS Nodes for the given small
BS. On the other hand, macrocells have significantly more
resources and higher transmission powers than small BSs. We



adjust the rate r;; for the given macrocell j by multiplying the
rate calculated through SINR with a modification factor b; to
reflect that the marcocell j has more wireless resources than
small BSs.

V. OFFLOADING EFFICIENCY ANALYSIS

In this section, we study the efficiency of association
algorithms in a randomly deployed network to get a better
understanding about the performance of matching based solu-
tions. We mainly focus on the metric of offloading efficiency
1, which is defined as the ratio of users which can be served
by the femtocell tier under the given association scheme. In
a network with multiple tiers, offloading efficiency determines
how many users should be served by the higher tiers of BSs,
as discussed in Sec. III.

We assume that both femtocells and the users are dis-
tributed as homogenous Poisson Point Process (PPP) with
intensity of Ay and ), respectively. We define the load factor
las Ay /A t» i.e., the average number of users that a femtocell
should serve. We further assume that each femtocell can serve
at most « users within its communication range of R. Under
these capacity and communication range constraints, we can
analytically compare the efficiency of different association
algorithms.

First, consider the association scheme which tries to asso-
ciate users to the nearest femtocell. If the nearest femtocell is
full, the user is associated to the higher tier of cells.

Define P{N,, = k} as the probability that the Voronoi
cell of a femtocell contains k users. We have the offloading
efficiency of the associate-to-nearest algorithm as:

Mn = % (ik]P’{N =k} +k i P{N, —k})
k=0

k=rk+1
! (,@ 3 (k- BB, = k}) . ®)
k=0

Unfortunately, there is no closed form solution for P{N, = k},
the best known approximation is given by [19], [20]:

3.53°T(k + 3.5)I*
(3.5)k!(I + 3.5)k+3:5”

where I'(z) is the Gamma function.

P{N, =k} = 5 ©

We observe that the offloading efficiency 7,, is only related
to x and [. Thus, it cannot be improved by increasing the
network density while keeping « and [ fixed. This implies that
the offloading efficiency for the associate-to-nearest algorithm
is governed by the intrinsic randomness in node distribution.
Table III gives numerical results for 7,,. When « = [, i.e.,
femtocells have just enough resources to serve all users,
the associate-to-nearest algorithm have offloading efficiency
lower than 75%. To achieve offloading efficiency higher than
95%, we often need x > 2[, which means the capacity of
femtocells should be over-provisioned by two times than the
actual number of users to be served.

Algorithms using local preference can improve over the
naive associate-to-nearest algorithm by associating users to
nearby vacant femtocells. However, global matching schemes

TABLE III. OFFLOADING EFFICIENCY FOR THE
ASSOCIATE-TO-NEAREST ALGORITHM

l k=1 kK=2 k=3 k=4 kK=>5 K=6
1 0.5851 0.8474 0.9483  0.9835 0.9950 0.9985
2 0.6636  0.8230 0.9110 0.9568 0.9796
3 0.6980 0.8132 0.8877 0.9341
4 0.7176  0.8080 0.8721
5 0.7303  0.8048
6 0.7393

such as Femto-Matching can achieve the optimal offloading
efficiency. This is because offload efficiency is maximized
when the size of matching between users and femtocells
is maximized. By using a matching algorithm considering
the global topology, we can fully utilize the capability of
femtocells, as shown by Theorem 2.

Theorem 2: The offloading efficiency of global matching
based association algorithm is lower bounded by:

(I1+1)log2

mIAfR? 10

N = 1-—-
with high probability, when both users and femtocell are
distributed according to PPP with intensity of A\, and A\; with
k> 1.

Proof: See Appendix C for the proof of Theorem 2. W

Theorem 2 shows that the offloading efficiency quickly
approaches 1 when the network density increases with a fixed
value of « and [. This hints that global matching algorithms
could be a powerful way to smooth out the randomness in
user/femtocell distributions. The actual performance compari-
son between global matching algorithm and local preference
based algorithms is studied via simulations in Sec. VI.

VI. SIMULATION RESULTS
A. Simulation Setup

Our simulation is conducted in randomly deployed net-
works within a 100 x 100 meters region. We assume that
the marcocell is located at the center of the network while
users and femtocells are distributed according to PPP. The
communication rate for a user ¢ under BS j is set to:

b

where d;; is the distance between user and BS. The meaning
of other parameters and the default simulation setting is
summarized in Tab. IV.

We compare our Femto-Matching algorithm with three
association algorithms:

— Associate-to-nearest

This algorithm associates users to the nearest femtocell, as
described in Sec.V.

— RAT selection game [3]

In this algorithm, users use their expected throughput as
their preference. Users always try to switch to a BS which
provides higher expected throughput.

— College admission [4]



03 38 1
88— &8 —8—F—F—1H I -©-College '
0.25 "5 Nearest B35 |O-RATgame x
-5-College @ ~*-FemtoMatching |  o0g
0.2 ?RAT game E 3.4 'g
) £
T °'15w £ g
- © o
= c
m\N\M - : M
» ®© 0.7
[ L -S-College
0.05, 5 3 2 RAT game
- 2 & FemtoMatching|
50 100 150 50 100 150 %o 100 150
N
(a) Ratio of users that cannot be offloaded (b) Average rate (c) Fairness among users
Fig. 3. Simulation result for different association algorithms in a 100x 100 meters region, k = [ = 5 (95% confidence interval).
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L Simulation region size 100 meters 8 +5 600
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P; Transmission power 40 (macro), 20 (femto) dBm € o 1 3
i K H] 2 3 4 5 6 7 8 50 100 150
No Noise level 90 dBm z Load of femtocells N

In college admission algorithm, users rank nearby BS based
on their preferences and submit requests to femtocells in
sequence. Femtocells rank received requests and turn down
lower ranked requests when the number of requests exceeds
its capacity. In our implementation, we use average commu-
nication rate to determine the preference for both users and
femtocells.

B. Performance Evaluation

Fig. 3 compares the performance of Femto-Matching with
other association algorithms. As the number of femtocells in
the simulation region increases, the ratio of users that cannot
be offloaded, 1—n, remains the same in the associate-to-nearest
algorithm. On the other hand, Femto-matching has the highest
decreasing speed in 1 — 1 among all association algorithms.
In most cases, the proportion of users that cannot be offloaded
is less than half of the RAT selection game solution and it is
very close to the lower bound, the ratio of users that has no
femtocells within communication range.

The result of average throughput is given in Fig. 3(b).
We see that college admission algorithm has the highest
average throughput, as this algorithm tries to assign users
to their nearest femtocell and users close to femtocells get
very high rates. Femto-Matching outperforms RAT game in
average throughput. This is because a large number of users are
assigned to the marcocell in the RAT game algorithm, which
makes the macrocell overcrowded and lowers the throughput
for those associated with the macrocell. Fig. 3(c) shows Jain’s
fairness index for user throughput, which is defined as:

M
_ (Zi:l 3"1)2
MM 22

where z; = Zj cijTija;; is the throughput for user i. We
see that Femto-Matching has the highest fairness index among
all algorithms. The reason that college admission algorithm is
poor in fairness is that users at borders of femtocell are often
assigned to the macrocell, which gives them a much smaller
throughput share compared to those associated to a nearby
femtocell. Compared to college admission algorithm, Fetmo-
Matching provides reasonable tradeoff by achieving much
better fairness with a small reduction in average throughput.

(12)

(a) Load distribution for femtocells (b) Number of rounds for Femto-

Matching (95% confidence interval)

Fig. 4. Simulation result for randomly deployed networks with x = 8,1 = 5.

Fig. 4(a) shows the load distribution for femtocells when
the capacity of femtocells x = 8 is larger than the load [ =
5 for a network with 150 femtcocells. We see that college
admission algorithm gives unbalanced results, where more than
40 femtocells reach their capacity limit of 8 users. Femto-
Matching achieves much better load balancing where about
1/3 femtocells are serving 5 users, which is exactly equal to
the average load.

The number of auction rounds that Femto-Matching used
for different network sizes is shown in Fig. 4(b). For networks
with 150 femtocells and 750 users, Femto-Matching need only
about 800 rounds of auctions. Using curve fitting, we find
the number of auction rounds required under our simulation
settings is 485.4log N — 1617.7. Therefore, our simulation
result hints that the number of rounds increase as O(log V).

C. Trace-Driven Simulation

We use WiFi trace collected by the UIUC UIM system [21]
to verify the usefulness of Femto-Matching in real networks.
This database contains more than 22,000 WiFi scan records
for 28 mobile phones during a period of 3 weeks. Fig. 5(a) is
the histogram of the number of APs observed per-scan, where
the average number of APs observed per-scan is 8.39.

In our trace driven experiment, we treat each unique scan as
a virtual user and randomly pick M virtual users from all the
scans as users to be offloaded. Fig. 5(b) compares the number
of users cannot be offloaded when APs can serve up to k = 4
users. Both RAT game and Femto-Matching outperform the
college admission algorithm in real traces. Femto-Matching
can further reduce the number of unmatched users by 30%
compared to RAT game.

VII. CONCLUSION

In this paper, we proposed a new auction-based user
association algorithm which uses matching between users and
femtocells to improve the offloading efficiency of randomly
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deployed HetNets. There are several interesting issues which
may deserve further study: The first issue is how does user mo-
bility affect the performance of user association algorithm. The
second is related to our assumption that users are cooperative
and give truthful bids. In practical systems, how to design a
mechanism to prevent malicious users from benefiting through
the auction system needs to be considered.
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APPENDIX
A. Proof of Lemma 1

Proof: As the optimal ¢;; is equal to 1/K; [6], [3], the
maximum utility sum for the K; users is given by:

Kv
153, 75,
zlog(w)—log< ).
K;

Now consider the maximum weighted matching in G'.

13)

i) We first show that the weight for maximum weighted
matching in G’ is lower bounded by the utility given by
Eq. (13). We can construct a matching in G’ where user node
u;, is matched to v;?. The sum of the weights for edges in
this matching is given by:

K o Ko
Zlog <(k 1)k= rgw) — log (Hk;}{:ﬁcﬂ) ’ (14)

J
which is equal to the result in Eq.(13).

ii) We next show that the utility given by Eq.(13) is also
an upper bound for the maximum weighted matching in G'.
Consider the dual problem of maximum weighted matching,
which assigns a non-negative price on each node and find the
minimum price vertex cover in G’ [16]. As edges in G’ may
have negative weights, we add two positive constants, c¢; and
ca, to the weight of each edge in G/, i.e., w’fj = wfj +c1+co,
to avoid negative weights. We set

c1 = q(Kj), ez = [min{logry;}| + q(ny),

_ (k—1)k~"
where ¢(k) = —log <T
convex function when = > 1, we can verify that ¢(k) > 0 and
q(k) < q(k+1).

With the above adjustments, we have weights w ; = 0 for

all edges in G’. We then assign a price p{-} to each node in
G, with:

>. As xlogx is an increasing

c1 ifk=1
p{vh} = {er —q(k) if 1<k <Kj,

0 if k> K
p{ui} = c2 +logr;;

s)

vieU'. (16)

With this construction, we can verify that:
p{vF} >0, plui} >0, w'l; < plus} +p{vk},

For any matching M on G’ we have:

Vie U, Vk.

Sowh < 3 (puetel})
(ul,v}")EM (ul,v;?)EM
< > pluid+ Y0 pivf}
u; €U’ U;CGV’

K K k— 1)k-1

= KjCQJrZlOgT’jk]’+KJCl+Zlog<( o

k=1

K,

o
= Kj(c1 + c2) + log (HleJU) .

K

k=2

J
J
As G’ is a complete bipartite graph with |U’| = K; < n; =
|[V’|, we always have K, edges in the maximum weighted
matching. By removing the weight adjustment factor on edges,
which is equal to K;(c1+c2), we can see that Z(ul,vj’?)EM wfj
for any matching on G’ is upper bounded by the right side
of Eq. (13). As the upper bound and lower bound for the
maximum weighted matching are the same, the conclusion
follows. ]

B. Proof of Theorem 1

Proof: We prove the equivalence of the optimal solution
for PFUA and the maximum weighted matching problem by
showing that their optimal solutions can be converted to each
other and optimal values of the solutions are equal.

First, consider the optimal solution of the PFUA problem.
Given the optimal user association indicator a;;, we can
partition the bipartite graph G into a set of subgraphs G;, with
each G; only contains VBS nodes v] of BS j and user nodes
that are associated to BS j in the optimal solution of PFUA.
All edges connecting VBS nodes and user nodes belonging to
different subgraphs are removed. By Lemma 1, the weight for
maximum weighted matching on each subgraph G; is equal to
the utility sum for each BS j in PFUA. Therefore, the matching
weight sum over all G; is equal to the maximum utility sum
of the optimal solution for PFUA. As U;G; C G, maximum
weighted matching in G is no less than the sum of maximum
weighted matching on each subgraph. Therefore, the weight
of maximum weighted matching in G is larger than or equal
to the maximum utility sum of the PFUA problem.

Second, consider the maximum weighted matching on G.
When the matching is given, we can generate an associate
scheme, where user ¢ is associated to BS j if u; is matched
to one of the VBS node v;-“. In a similar way, we can also

)

an



partition G into a set of subgraphs G;. In this case, none of
the edges in the maximum weighted matching will be deleted,
so the maximum weighted matching on U;G; is equal to
the maximum weighted matching on G. By Lemma 1, there
exists a scheme for PFUA that has the sum utility equal to
the maximum matching weight for each G;. As nodes in G;
are disjoint, we can construct a solution for PFUA with the
utility sum equal to the maximum weighted matching on G.
Combining the result of the two steps, the optimal value for
the two problems must be equal to each other. |

C. Proof of Theorem 2

Proof: We first consider the case where x = [. Suppose
there are more than (1 — 7,,)M users cannot be matched to
femtocells. Under this condition, with arguments similar to
Hall’s marriage Theorem, we can always find a subset of BSs
B’ C B where its neighborhood size:

N(B") <UB'| - (1 —nm)M, (18)

where |B’| is the number of BSs in set B’ and N (B’) is

the number of users within the communication range of BSs
in B’. Note that we only need to consider subsets with size
| B'| larger than (1 — n,,,)|B|, since otherwise the right side of
Eq. (18) is smaller than O.

When BSs are distributed as Poisson Point Process, the
chance that a user is within the neighborhood of the subset B’
of the BSs is given by [22]:

=|B'|x;R?

pgr=1—e 1Bl . (19)

As users are also distributed as PPP, A/(B’) follows binomial
distribution with parameters of M and pp.. By Chernoff
bound, we have:

B{N(B') < U|B'| ~ (1~ nm)M} < e~ PCar ~0mmlipan,
[|B'|
with: D( o~ L mmllps
!
1B’ UBTl _ (1 _
= <7| |7(1771m)) log M 7 (1= 1m)
M pp’
1|B’|
I|B'| L- 5 + (0 —nm)
-4+ (- log—M ™
+< 2y T —mm) ) log rp—"

= -H (”Bll - 7nm)> + (”B/‘ - (1,%)) log

M y2:4

/
+(1— ZIAE;I +(1_77m)> log;, (20)

where H (x) is the entropy of z (in nats). Using the fact that
—H(z) > —log2 and (1 —n,) < ”—A‘t’jj‘ < 1, we have:

(UL ps ) > (1 1) log — - —log2
M Nm)IPB’ Tim g 1—pgy g 2.

The strict larger than sign comes from the fact that the first

two terms in Eq. (20) cannot reach their minimum value at the

same time. Using Eq. (10) and Eq. (19), we have:

1|B’ log 2
D (I = = wlowr ) > 252, en

|B'|
as “gr >1—np.
Since M =[N, we get

P{N(B') <UB'| = (1 — nm)M} < 27 N1+e), (22)

where € is a small constant that can be derived from Eq. (21).
There are at most 2"V choices for B’, since the number of
femtocells is V. Using the union bound, the chance that there
exists a subset B’ with N'(B’) <|B'| — (1 — n;n) M is o(1).
Consequently, the number of unmatched users is smaller than
(1 =9y, )M with high probability when N — co. When k > [,
the number of matched users is always larger than the case
k = [. Therefore, the conclusion of Theorem 2 follows. ]
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