Combinatorics
Circuit Complexity

Boolean function

\[f : \{0, 1\}^n \rightarrow \{0, 1\} \]

• DAG (directed acyclic graph)

• Nodes:
 • inputs: \(x_1 \ldots x_n \)
 • gates: \(\land \lor \neg \)

• Complexity: \#gates
Theorem (Shannon 1949)

There is a boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ which cannot be computed by any circuit with $\frac{2^n}{3n}$ gates.
of \(f : \{0, 1\}^n \rightarrow \{0, 1\} \)

\[\left| \{0, 1\}^{2^n} \right| = 2^{2^n} \]

of circuits with \(t \) gates:

\[< 2^t(2n + t + 1)^{2t} \]

- \(\land, \lor \) gates
- \(x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n, 0, 1 \)

De Morgan’s law:
- \(\neg (A \lor B) = \neg A \land \neg B \)
- \(\neg (A \land B) = \neg A \lor \neg B \)

- \(\land, \lor \)
- \(x_i, \neg x_i, 0, 1 \)
- other \((t-1)\) gates
Theorem (Shannon 1949)

There is a boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ which cannot be computed by any circuit with $\frac{2^n}{3n}$ gates.

Almost all

one circuit computes one function

#f computable by t gates \leq

#circuits with t gates \leq

$2^t (2n + t + 1)^{2t} \ll 2^{2^n} = \#f$

$\frac{2^n}{3n} = t$
Double Counting

“Count the same thing twice. The result will be the same.”
Handshaking lemma

A party of \(n \) guests.

The number of guests who shake hands an odd number of times is even.

Modeling:

\[n \text{ guests} \iff n \text{ vertices} \]

\[\text{handshaking} \iff \text{edge} \]

\# of handshaking \iff degree
Lemma (Euler 1736)

$$\sum_{v \in V} d(v) = 2|E|$$

In the 1736 paper of Seven Bridges of Königsberg

Leonhard Euler
Lemma (Euler 1736)

\[\sum_{v \in V} d(v) = 2|E| \]

Count directed edges:

\[(u, v) : \{u, v\} \in E \]

Count by vertex:

\[\forall v \in V \]
\[d \text{ directed edges} \]
\[(v, u_1) \cdots (v, u_d) \]

Count by edge:

\[\forall \{u, v\} \in E \]
\[2 \text{ directions} \]
\[(u, v) \text{ and } (v, u) \]
Lemma (Euler 1736)

\[\sum_{v \in V} d(v) = 2|E| \]

Corollary

of odd-degree vertices is even.
Sperner’s Lemma

line segment: \(ab \) divided into small segments

each endpoint: red or blue

\(ab \) have different color

\(\exists \) small segment

Emanuel Sperner
Sperner’s Lemma

triangle: abc

triangulation

proper coloring:

3 colors red, blue, green

abc is tricolored

lines ab, bc, ac are 2-colored

Sperner’s Lemma (1928)

\forall properly colored triangulation of a triangle,

\exists a tricolored small triangle.
Sperner’s Lemma (1928)

∀ properly colored triangulation of a triangle, ∃ a tricolored small triangle.

partial dual graph:
- each △ is a vertex
- the outer-space is a vertex
- add an edge if 2 △ share a edge

degree of △ node: 1
degree of △ or △ node: 2
other cases: 0 degree
Sperner’s Lemma (1928)

∀ properly colored triangulation of a triangle,
∃ a tricolored small triangle.

partial dual graph:

degree of \(\triangle \) node: 1

degree of other \(\triangle \): even

handshaking lemma:

\# of odd-degree vertices is even.

\# of \(\triangle \): odd \(\neq 0 \)
Sperner’s Lemma (1928)
∀ properly colored triangulation of a triangle,
∃ a tricolored small triangle.

Brouwer’s fixed point theorem (1911)
∀ continuous function \(f: B \rightarrow B \) of an \(n \)-dimensional ball \(B \), \(\exists \) a fixed point \(x = f(x) \).

high-dimension: triangle \(\rightarrow \) simplex
triangulation \(\rightarrow \) simplicial subdivision
Pigeonhole Principle

If \(mn \) objects are partitioned into \(n \) classes, then some class receives \(m \) objects.
Schubfachprinzip

“drawer principle”

Dirichlet Principle

Johann Peter Gustav Lejeune Dirichlet
Dirichlet's approximation

x is an irrational number.

Approximate x by a rational with bounded denominator.

Theorem (Dirichlet 1879)

For any natural number n, there is a rational number $\frac{p}{q}$ such that $1 \leq q \leq n$ and

\[
\left| x - \frac{p}{q} \right| < \frac{1}{nq}.
\]
For any natural number n, there is a rational number $\frac{p}{q}$ such that $1 \leq q \leq n$ and
\[
\left| x - \frac{p}{q} \right| < \frac{1}{nq}.
\]

Theorem (Dirichlet 1879)

x is an irrational number.

fractional part: $\{x\} = x - \lfloor x \rfloor$

$(n+1)$ pigeons: $\{kx\}$ for $k = 1, \ldots, n + 1$

n holes: $\left(0, \frac{1}{n}\right), \left(\frac{1}{n}, \frac{2}{n}\right), \ldots, \left(\frac{n-1}{n}, 1\right)$
x is an irrational number.

fractional part: \(\{x\} = x - \lfloor x \rfloor \)

(n+1) pigeons: \(\{kx\} \) for \(k = 1, \ldots, n+1 \)

n holes: \(\left(0, \frac{1}{n}\right), \left(\frac{1}{n}, \frac{2}{n}\right), \ldots, \left(\frac{n-1}{n}, 1\right) \)

\[\exists 1 \leq b < a \leq n+1 \quad \{ax\}, \{bx\} \text{ in the same hole} \]

\[(a - b)x - ([ax] - [bx]) = \{ax\} - \{bx\} < \frac{1}{n} \]

integers: \(q \leq n \quad p \)

\[|qx - p| < \frac{1}{n} \quad \Rightarrow \quad \left| x - \frac{p}{q} \right| < \frac{1}{nq} \].
An *initiation* question to Mathematics

\[
\forall S \subseteq \{1, 2, \ldots, 2n\} \text{ that } |S| > n \\
\exists a, b \in S \text{ such that } a \mid b
\]

\[
\forall a \in \{1, 2, \ldots, 2n\} \\
a = 2^k m \text{ for an odd } m
\]

\[
C_m = \{2^k m \mid k \geq 0, 2^k m \leq 2n\}
\]

\[
> n \text{ pigeons: } S \\
n \text{ pigeonholes: } C_1, C_3, C_5, \ldots, C_{2n-1}
\]

\[
a < b \quad a, b \in C_m \rightarrow a \mid b
\]
Monotonic subsequences

sequence: \((a_1, \ldots, a_n)\) of \(n\) different numbers

\[1 \leq i_1 < i_2 < \cdots < i_k \leq n\]

subsequence:

\((a_{i_1}, a_{i_2}, \ldots, a_{i_k})\)

increasing:

\[a_{i_1} < a_{i_2} < \ldots < a_{i_k}\]

decreasing:

\[a_{i_1} > a_{i_2} > \ldots > a_{i_k}\]
Theorem (Erdős-Szekeres 1935)

A sequence of \(> mn \) different numbers must contain either an increasing subsequence of length \(m + 1 \), or a decreasing subsequence of length \(n + 1 \).
\((a_1, \ldots, a_N)\) of \(N\) different numbers \(N > mn\)

associate each \(a_i\) with \((x_i, y_i)\)

\(x_i:\) length of longest \textit{increasing} subsequence \textit{ending} at \(a_i\)

\(y_i:\) length of longest \textit{decreasing} subsequence \textit{starting} at \(a_i\)

\(\forall i \neq j, \ (x_i, y_i) \neq (x_j, y_j)\)

\begin{cases}
\text{assume } i < j & \text{Cases.1: } a_i < a_j & \Rightarrow & x_i < x_j \\
\text{Cases.2: } a_i > a_j & \Rightarrow & y_i > y_j
\end{cases}
\((a_1, \ldots, a_N)\) of \(N\) different numbers \(N > mn\)

\(x_i\) : length of longest \textit{increasing} subsequence \textit{ending} at \(a_i\)

\(y_i\) : length of longest \textit{decreasing} subsequence \textit{starting} at \(a_i\)

\(\forall i \neq j, \ (x_i, y_i) \neq (x_j, y_j)\)

“\textit{One pigeon per each hole}.”

No way to put \(N\) pigeons into \(mn\) holes.

\textbf{“\(N\) pigeons”} \((a_1, \ldots, a_N)\)

\(a_i\) is in hole \((x_i, y_i)\)

\(N\)

\(m\)

\(n\)

\(N\)
Theorem (Erdős-Szekeres 1935)

A sequence of \(> mn \) different numbers must contain either an increasing subsequence of length \(m+1 \), or a decreasing subsequence of length \(n+1 \).

\[(a_1, \ldots, a_N) \quad N > mn\]

\(x_i\) : length of longest *increasing* subsequence ending at \(a_i\)

\(y_i\) : length of longest *decreasing* subsequence starting at \(a_i\)