Advanced Algorithms
(Martingales and the Method of Bounded Differences)
(Some) Concentration Inequalities

Question: probability that X deviates more than δ from expectation?

For independent r.v. $X_1, X_2, \cdots, X_n \in \{0, 1\}$, let $X = \sum_{i=1}^{n} X_i$, and $\mu = \mathbb{E}(X)$, then:

for any $\delta > 0$,
$$\mathbb{P}(X \geq (1 + \delta)\mu) \leq \left(\frac{e^\delta}{(1+\delta)^{1+\delta}}\right)^\mu$$

for $0 < \delta < 1$,
$$\mathbb{P}(X \leq (1 - \delta)\mu) \leq \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^\mu$$

For independent r.v. X_1, X_2, \cdots, X_n where $X_i \in [a_i, b_i]$, let $X = \sum_{i=1}^{n} X_i$, then:

for any $t > 0$,
$$\mathbb{P}(X \geq \mathbb{E}(X) + t) \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i-a_i)^2}\right)$$
$$\mathbb{P}(X \leq \mathbb{E}(X) - t) \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i-a_i)^2}\right)$$
Question: probability that X deviates more than δ from expectation?

For independent r.v. $X_1, X_2, \cdots, X_n \in \{0, 1\}$, let $X = \sum_{i=1}^{n} X_i$, and $\mu = \mathbb{E}(X)$, then:

for any $\delta > 0$,
$$\mathbb{P}(X \geq (1 + \delta)\mu) \leq \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \right)^{\mu}$$

for $0 < \delta < 1$,
$$\mathbb{P}(X \leq (1 - \delta)\mu) \leq \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \right)^{\mu}$$

For independent r.v. X_1, X_2, \cdots, X_n where $X_i \in [a_i, b_i]$, let $X = \sum_{i=1}^{n} X_i$, then:

for any $t > 0$,
$$\mathbb{P}(X \geq \mathbb{E}(X) + t) \leq \exp \left(-\sum_{i=1}^{n} \frac{2t^2}{(b_i - a_i)^2} \right)$$

$$\mathbb{P}(X \leq \mathbb{E}(X) - t) \leq \exp \left(-\sum_{i=1}^{n} \frac{2t^2}{(b_i - a_i)^2} \right)$$
Conditional Probability

The *conditional probability* that event \mathcal{E}_1 occurs, given that event \mathcal{E}_2 occurs, is:

$$P(\mathcal{E}_1 | \mathcal{E}_2) = \frac{P(\mathcal{E}_1 \cap \mathcal{E}_2)}{P(\mathcal{E}_2)}$$
Conditional Probability

The *conditional probability* that event \mathcal{E}_1 occurs, given that event \mathcal{E}_2 occurs, is:

$$
P(\mathcal{E}_1 | \mathcal{E}_2) = \frac{P(\mathcal{E}_1 \cap \mathcal{E}_2)}{P(\mathcal{E}_2)}$$

Example:
roll a fair six-sided dice
$\mathcal{E}_1 =$ the outcome is six
$\mathcal{E}_2 =$ the outcome is an even number
Conditional Probability

The *conditional probability* that event \mathcal{E}_1 occurs, given that event \mathcal{E}_2 occurs, is:

$$P(\mathcal{E}_1|\mathcal{E}_2) = \frac{P(\mathcal{E}_1 \cap \mathcal{E}_2)}{P(\mathcal{E}_2)}$$

Example:

roll a fair six-sided dice

\mathcal{E}_1 = the outcome is six

\mathcal{E}_2 = the outcome is an even number

$$P(\mathcal{E}_1|\mathcal{E}_2) = \frac{1/6}{1/2} = \frac{1}{3}$$
Conditional Expectation

The *conditional expectation* of a random variable Y with respect to an event \mathcal{E} is:

$$
\mathbb{E}(Y \mid \mathcal{E}) = \sum_y y \cdot \mathbb{P}(Y = y \mid \mathcal{E})
$$

In particular, if the event \mathcal{E} is $X = x$, then:

$$
\mathbb{E}(Y \mid X = x) = \sum_y y \cdot \mathbb{P}(Y = y \mid X = x)
$$
Conditional Expectation

The conditional expectation of a random variable Y with respect to an event \mathcal{E} is:

$$
\mathbb{E}(Y \mid \mathcal{E}) = \sum_y y \cdot \mathbb{P}(Y = y \mid \mathcal{E})
$$

In particular, if the event \mathcal{E} is $X = x$, then:

$$
\mathbb{E}(Y \mid X = x) = \sum_y y \cdot \mathbb{P}(Y = y \mid X = x)
$$

Example:

sample a human being uniformly at random

Y: height of the chosen human being

X: country of origin of the chosen human being
Conditional Expectation

The *conditional expectation* of a random variable Y with respect to an event \mathcal{E} is:

$$\mathbb{E}(Y \mid \mathcal{E}) = \sum_{y} y \cdot \mathbb{P}(Y = y \mid \mathcal{E})$$

In particular, if the event \mathcal{E} is $X = x$, then:

$$\mathbb{E}(Y \mid X = x) = \sum_{y} y \cdot \mathbb{P}(Y = y \mid X = x)$$

Example:

sample a human being uniformly at random

Y: height of the chosen human being

X: country of origin of the chosen human being

$\mathbb{E}(Y) =$?
Conditional Expectation

The conditional expectation of a random variable \(Y \) with respect to an event \(\mathcal{E} \) is:

\[
\mathbb{E}(Y \mid \mathcal{E}) = \sum_y y \cdot \mathbb{P}(Y = y \mid \mathcal{E})
\]

In particular, if the event \(\mathcal{E} \) is \(X = x \), then:

\[
\mathbb{E}(Y \mid X = x) = \sum_y y \cdot \mathbb{P}(Y = y \mid X = x)
\]

Example:

sample a human being uniformly at random

\(Y \): height of the chosen human being

\(X \): country of origin of the chosen human being

\(\mathbb{E}(Y) = ? \)

\(\mathbb{E}(Y \mid X = "China") = ? \)
Conditional Expectation

The *conditional expectation* of a random variable Y with respect to an event \mathcal{E} is:

$$
\mathbb{E}(Y \mid \mathcal{E}) = \sum_y y \cdot \mathbb{P}(Y = y \mid \mathcal{E})
$$

In particular, if the event \mathcal{E} is $X = x$, then:

$$
\mathbb{E}(Y \mid X = x) = \sum_y y \cdot \mathbb{P}(Y = y \mid X = x)
$$

Example:

sample a human being uniformly at random

Y: height of the chosen human being

X: country of origin of the chosen human being

$\mathbb{E}(Y) =$?

$\mathbb{E}(Y \mid X = \text{"China"}) =$?

$\mathbb{E}(Y \mid X = \text{"U.S."}) =$?
Conditional Expectation

Example:
sample a human being uniformly at random
Y: height of the chosen human being
X: country of origin of the chosen human being

$\mathbb{E}(Y \mid X = "China") = ?$

$\mathbb{E}(Y \mid X = "U.S.") = ?$
Conditional Expectation

Example:
sample a human being uniformly at random

Y: height of the chosen human being

X: country of origin of the chosen human being

$\mathbb{E}(Y \mid X = \text{"China"}) = \ ?$

$\mathbb{E}(Y \mid X = \text{"U.S."}) = \ ?$

$\mathbb{E}(Y \mid X = x)$
Conditional Expectation

Example:

Sample a human being uniformly at random

- \(Y \): height of the chosen human being
- \(X \): country of origin of the chosen human being

\[
\mathbb{E}(Y \mid X = "China") = ?
\]
\[
\mathbb{E}(Y \mid X = "U.S.") = ?
\]

\[
f(x) = \mathbb{E}(Y \mid X = x)
\]
Conditional Expectation

Example:

Sample a human being uniformly at random

Y: height of the chosen human being

X: country of origin of the chosen human being

$\mathbb{E}(Y \mid X = "China") = ?$

$\mathbb{E}(Y \mid X = "U.S.") = ?$

\[
f(X) = \mathbb{E}(Y \mid X)\]
Conditional Expectation

Example:
sample a human being uniformly at random
Y: height of the chosen human being
X: country of origin of the chosen human being

$\mathbb{E}(Y \mid X = "China") = ?$
$\mathbb{E}(Y \mid X = "U.S.") = ?$

$$f(X) = \mathbb{E}(Y \mid X)$$
a random variable
Conditional Expectation

Example:
sample a human being uniformly at random

Y: height of the chosen human being

X: country of origin of the chosen human being

$\mathbb{E}(Y \mid X = "China") =$?

$\mathbb{E}(Y \mid X = "U.S.") =$?

$$f(X) = \mathbb{E}(Y \mid X)$$

a random variable

Example:
throw a fair six-sided dice for n times

X_i: # of times i appears in n throws
Conditional Expectation

Example:
sample a human being uniformly at random
Y: height of the chosen human being
X: country of origin of the chosen human being

$\mathbb{E}(Y \mid X = "China") = ?$

$\mathbb{E}(Y \mid X = "U.S.") = ?$

$f(X) = \mathbb{E}(Y \mid X)$
a random variable

Example:
throw a fair six-sided dice for n times
X_i: # of times i appears in n throws

$\mathbb{E}(X_1 \mid X_2 = a) =$
Conditional Expectation

Example:
sample a human being uniformly at random
Y: height of the chosen human being
X: country of origin of the chosen human being

$\mathbb{E}(Y \mid X = "China") = ?$

$\mathbb{E}(Y \mid X = "U.S.") = ?$

$f(X) = \mathbb{E}(Y \mid X)$
a random variable

Example:
throw a fair six-sided dice for n times
X_i: # of times i appears in n throws

$\mathbb{E}(X_1 \mid X_2 = a) = (n - a)/5$
Conditional Expectation

Example:
sample a human being uniformly at random

\[\hat{Y}: \text{height of the chosen human being} \]
\[\hat{X}: \text{country of origin of the chosen human being} \]

\[\mathbb{E}(Y \mid X = \text{"China"}) = ? \]
\[\mathbb{E}(Y \mid X = \text{"U.S."}) = ? \]

\[f(X) = \mathbb{E}(Y \mid X) \]

Example:
throw a fair six-sided dice for \(n \) times

\[X_i: \text{# of times } i \text{ appears in } n \text{ throws} \]

\[\mathbb{E}(X_1 \mid X_2 = a) = \frac{n - a}{5} \]

\[\mathbb{E}(X_1 \mid X_2) = \]
Conditional Expectation

Example:
sample a human being uniformly at random
\(Y \): height of the chosen human being
\(X \): country of origin of the chosen human being
\[\mathbb{E}(Y \mid X = "China") = ? \]
\[\mathbb{E}(Y \mid X = "U.S.") = ? \]

\[f(X) = \mathbb{E}(Y \mid X) \quad \text{a random variable} \]

Example:
throw a fair six-sided dice for \(n \) times
\(X_i \): \# of times \(i \) appears in \(n \) throws
\[\mathbb{E}(X_1 \mid X_2 = a) = (n - a)/5 \]
\[\mathbb{E}(X_1 \mid X_2) = (n - X_2)/5 \]
Conditional Expectation

Example:
sample a human being uniformly at random Y: height of the chosen human being
X: country of origin of the chosen human being

$$f(X) = \mathbb{E}(Y \mid X)$$

Example:
throw a fair six-sided dice for n times
X_i: # of times i appears in n throws

$$\mathbb{E}(X_1 \mid X_2 = a) = (n - a)/5$$
$$\mathbb{E}(X_1 \mid X_2) = (n - X_2)/5$$
$$\mathbb{E}(X_1 \mid X_2 = a, X_3 = b) =$$
Conditional Expectation

Example:
sample a human being uniformly at random
Y: height of the chosen human being
X: country of origin of the chosen human being

$\mathbb{E}(Y \mid X = \text{"China"}) = ?$
$\mathbb{E}(Y \mid X = \text{"U.S."}) = ?$

$f(X) = \mathbb{E}(Y \mid X)$

Example:
throw a fair six-sided dice for n times
X_i: # of times i appears in n throws

$\mathbb{E}(X_1 \mid X_2 = a) = (n - a)/5$
$\mathbb{E}(X_1 \mid X_2) = (n - X_2)/5$

$\mathbb{E}(X_1 \mid X_2 = a, X_3 = b) = (n - a - b)/4$
Conditional Expectation

Example:
sample a human being uniformly at random
\(Y: \) height of the chosen human being
\(X: \) country of origin of the chosen human being
\[\mathbb{E}(Y \mid X = \text{"China"}) =? \]
\[\mathbb{E}(Y \mid X = \text{"U.S."}) =? \]

\[f(X) = \mathbb{E}(Y \mid X) \]

Example:
throw a fair six-sided dice for \(n \) times
\(X_i: \) # of times \(i \) appears in \(n \) throws
\[\mathbb{E}(X_1 \mid X_2 = a) = (n - a)/5 \]
\[\mathbb{E}(X_1 \mid X_2) = (n - X_2)/5 \]
\[\mathbb{E}(X_1 \mid X_2 = a, X_3 = b) = (n - a - b)/4 \]
\[\mathbb{E}(X_1 \mid X_2, X_3) = \]
Conditional Expectation

Example:
sample a human being uniformly at random
\(Y \): height of the chosen human being
\(X \): country of origin of the chosen human being

\[\mathbb{E}(Y \mid X = "China") = ? \]
\[\mathbb{E}(Y \mid X = "U.S.") = ? \]

\[f(X) = \mathbb{E}(Y \mid X) \]
\[\text{a random variable} \]

Example:
throw a fair six-sided dice for \(n \) times
\(X_i \): # of times \(i \) appears in \(n \) throws

\[\mathbb{E}(X_1 \mid X_2 = a) = (n - a)/5 \]
\[\mathbb{E}(X_1 \mid X_2) = (n - X_2)/5 \]
\[\mathbb{E}(X_1 \mid X_2 = a, X_3 = b) = (n - a - b)/4 \]
\[\mathbb{E}(X_1 \mid X_2, X_3) = (n - X_2 - X_3)/4 \]
Fundamental Facts about Conditional Expectation

Example: Y: height of the chosen human being
X: country of origin of the chosen human being
Z: gender of the chosen human being
Fundamental Facts about Conditional Expectation

Example: \(Y \): height of the chosen human being
\(X \): country of origin of the chosen human being
\(Z \): gender of the chosen human being

\[
\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y | X))
\]
Fundamental Facts about Conditional Expectation

Example: Y: height of the chosen human being
X: country of origin of the chosen human being
Z: gender of the chosen human being

\[
E(Y) = E\left(E(Y \mid X)\right)
\]

- average height of all human beings
- $= \text{weighted average of the country-by-country average heights}$
Fundamental Facts about Conditional Expectation

Example: \(Y \): height of the chosen human being
\(X \): country of origin of the chosen human being
\(Z \): gender of the chosen human being

\[
E(Y) = E\left(E(Y \mid X) \right)
\]

average height of all human beings
= weighted average of the country-by-country average heights

\[
E(Y \mid Z) = E\left(E(Y \mid X, Z) \mid Z \right)
\]
Fundamental Facts about Conditional Expectation

Example: \(Y \): height of the chosen human being
\(X \): country of origin of the chosen human being
\(Z \): gender of the chosen human being

\[
E(Y) = E(E(Y | X))
\]

average height of all human beings
= weighted average of the country-by-country average heights

\[
E(Y | Z) = E(E(Y | X, Z) | Z)
\]

average height of all male/female human beings
= weighted average of the country-by-country average male/female heights
Fundamental Facts about Conditional Expectation

\[E(Y) = E\left(E(Y \mid X) \right) \]

average height of all human beings
\[= \text{weighted average of the country-by-country average heights} \]

\[E(Y \mid Z) = E\left(E(Y \mid X, Z) \mid Z \right) \]

average height of all male/female human beings
\[= \text{weighted average of the country-by-country average male/female heights} \]

\[E\left(E(f(X)g(X,Y) \mid X) \right) = E\left(f(X)E(g(X,Y) \mid X) \right) \]
Fundamental Facts about Conditional Expectation

Example: Y: height of the chosen human being
X: country of origin of the chosen human being
Z: gender of the chosen human being

\[
\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y \mid X))
\]

average height of all human beings
= weighted average of the country-by-country average heights

\[
\mathbb{E}(Y \mid Z) = \mathbb{E}(\mathbb{E}(Y \mid X, Z) \mid Z)
\]

average height of all male/female human beings
= weighted average of the country-by-country average male/female heights

\[
\mathbb{E}(\mathbb{E}(f(X)g(X,Y) \mid X)) = \mathbb{E}(f(X)\mathbb{E}(g(X,Y) \mid X))
\]

once X is fixed to some x,
\[
\mathbb{E}(f(X)g(X,Y) \mid X = x) = f(x)\mathbb{E}(g(X,Y) \mid X = x)
\]
Martingales

originally refers to a betting strategy:

“double your bet after every loss”
Martingales

originally refers to a betting strategy:

“double your bet after every loss”

when you get a win after n losses: $2^n - \sum_{i=0}^{n-1} 2^i = 1$
Martingales

originally refers to a betting strategy:

“double your bet after every loss”

when you get a win after n losses: $2^n - \sum_{i=0}^{n-1} 2^i = 1$

consider a fair game, with any betting strategy
Martingales

originally refers to a betting strategy:

“double your bet after every loss”

when you get a win after \(n \) losses: \(2^n - \sum_{i=0}^{n-1} 2^i = 1 \)

consider a fair game, with any betting strategy

let \(X_i \) be our wealth after \(i \) rounds
Martingales

originally refers to a betting strategy:

“double your bet after every loss”

when you get a win after n losses: $2^n - \sum_{i=0}^{n-1} 2^i = 1$

consider a fair game, with any betting strategy

let X_i be our wealth after i rounds

$$\mathbb{E}(X_{i+1} \mid X_0, X_1, \ldots, X_i) =$$
Martingales

originally refers to a betting strategy:

“double your bet after every loss”

when you get a win after n losses: $2^n - \sum_{i=0}^{n-1} 2^i = 1$

consider a fair game, with any betting strategy

let X_i be our wealth after i rounds

$\mathbb{E}(X_{i+1} | X_0, X_1, \ldots, X_i) = X_i$
Martingales

originally refers to a betting strategy:

“double your bet after every loss”

when you get a win after \(n \) losses: \(2^n - \sum_{i=0}^{n-1} 2^i = 1 \)

consider a fair game, with any betting strategy

let \(X_i \) be our wealth after \(i \) rounds

\[
\mathbb{E}(X_{i+1} \mid X_0, X_1, \ldots, X_i) = X_i
\]

since the game is fair, conditioned on past history, we expect no change to current value after one round
Martingales

A sequence of random variables X_0, X_1, \cdots is a martingale if for all $i \geq 1$,

$$\mathbb{E}(X_i \mid X_0, X_1, \cdots, X_{i-1}) = X_{i-1}$$
Example: Random Walk

a dot starting from the origin in each step, move equiprobably to one of four neighbor
Example: Random Walk

- A dot starting from the origin.
- In each step, move equiprobably to one of four neighbors.
- After i steps, use X_i to denote the number of hops to the origin (Manhattan distance).
Random Walk

Start from the origin and in each step, move equiprobably to one of four neighbors.

After \(i \) steps, use \(X_i \) to denote the number of hops to the origin (Manhattan distance).
Example: Random Walk

a dot starting from the origin
in each step, move equiprobably
to one of four neighbors

after i steps, use X_i to denote
of hops to origin (Manhattan distance)

$$E(X_i \mid X_0, X_1, \cdots, X_{i-1}) = X_{i-1}$$
Example: Random Walk

A dot starting from the origin in each step, move equiprobably to one of four neighbors after \(i\) steps, use \(X_i\) to denote # of hops to origin (Manhattan distance)

\[
\mathbb{E}(X_i \mid X_0, X_1, \cdots, X_{i-1}) = X_{i-1}
\]

How far the dot is away from the origin after \(n\) steps?
Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$
Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

X_0, X_1, \cdots are not necessarily independent
Azuma’s Inequality in Action

After i steps, use X_i to denote
of hops to origin (Manhattan distance)

How large is X_n?
Azuma’s Inequality in Action

After i steps, use X_i to denote
of hops to origin (Manhattan distance)

How large is X_n?

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

\[|X_k - X_{k-1}| \leq c_k \]

Then,

\[
\Pr(|X_n - X_0| \geq t) \leq 2 \exp \left(-2 \frac{t^2}{\sum_{k=1}^{n} c_k^2} \right)
\]
Azuma’s Inequality in Action

After i steps, use X_i to denote
of hops to origin (Manhattan distance)

How large is X_n?

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,
$$|X_k - X_{k-1}| \leq c_k$$

Then,
$$\mathbb{P}(\left|X_n - X_0\right| \geq t) \leq 2 \exp\left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2}\right)$$

We know $X_0 = 0$, and $|X_k - X_{k-1}| \leq 1$
Azuma’s Inequality in Action

After \(i \) steps, use \(X_i \) to denote
of hops to origin (Manhattan distance)

How large is \(X_n \)?

Let \(X_0, X_1, \cdots \) be a martingale such that for all \(k \geq 1 \),
\[
|X_k - X_{k-1}| \leq c_k
\]

Then,
\[
\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^n c_k^2} \right)
\]

We know \(X_0 = 0 \), and \(|X_k - X_{k-1}| \leq 1 \)
\[
\mathbb{P}(|X_n| \geq c\sqrt{n}) \leq 2e^{-c^2/2}
\]
Azuma’s Inequality in Action

After i steps, use X_i to denote the number of hops to origin (Manhattan distance).

How large is X_n?

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2\sum_{k=1}^{n} c_k^2}\right)$$

We know $X_0 = 0$, and $|X_k - X_{k-1}| \leq 1$

$$\mathbb{P}(|X_n| \geq c\sqrt{n}) \leq 2e^{-c^2/2}$$

Within $O(\sqrt{n \log n})$ w.h.p.
Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$
Azuma’s Inequality

Let X_0, X_1, \ldots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\Pr(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

For a sequence of r.v., if in each step:
* on average make no change to current value (martingale)
* no big jump (bounded difference)
Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

For a sequence of r.v., if in each step:
* on average make no change to current value (martingale)
* no big jump (bounded difference)

Then final value does not deviate far from the initial.
Proving Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1,$

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$
Proving Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,
$$|X_k - X_{k-1}| \leq c_k$$

Then,
$$\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(- \frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

Use similar strategy as in proving Chernoff bound:
Proving Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1,$

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

Use similar strategy as in proving Chernoff bound:

(a) Apply generalized Markov’s inequality to MGF
Proving Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

Use similar strategy as in proving Chernoff bound:
(a) Apply generalized Markov’s inequality to MGF
(b)* Bound the value of MGF (use Hoeffding’s lemma)
Proving Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

Use similar strategy as in proving Chernoff bound:
(a) Apply generalized Markov’s inequality to MGF
(b)* Bound the value of MGF (use Hoeffding’s lemma)
(c) Optimize the value of MGF
Proving Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,\[|X_k - X_{k-1}| \leq c_k\]

Then,

$$\mathbb{P}(X_n - X_0 \geq t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

$$\mathbb{P}(X_n - X_0 \leq -t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$
Proving Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(X_n - X_0 \geq t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

$$\mathbb{P}(X_n - X_0 \leq -t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$
Proving Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,
\[|X_k - X_{k-1}| \leq c_k \]

Then,

\[
P(X_n - X_0 \geq t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)
\]

\[
P(X_n - X_0 \leq -t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)
\]

W.l.o.g., assume $X_0 = 0$. (Otherwise, do the proof w.r.t. sequence $X'_i = X_i - X_0$.)
Proving Azuma’s Inequality

Let X_0, X_1, \ldots be a martingale such that for all $k \geq 1$,
$$|X_k - X_{k-1}| \leq c_k$$

Then,
$$\mathbb{P}(X_n - X_0 \geq t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$
$$\mathbb{P}(X_n - X_0 \leq -t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

W.l.o.g., assume $X_0 = 0$. (Otherwise, do the proof w.r.t. sequence $X'_i = X_i - X_0$.)

Define $Y_i = X_i - X_{i-1}$, it is easy to see $\mathbb{E}(Y_i | X_{i-1}) = 0$.
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i | X_{i-1}) = 0$

$\mathbb{P}(X_n - X_0 \geq t) \leq ?$
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$.

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i|X_{i-1}) = 0$.

$\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$ for $\lambda > 0$.

$\mathbb{P}(X_n - X_0 \geq t) = \mathbb{P}(X_n \geq t) = \mathbb{P}(e^{\lambda X_n} \geq e^{\lambda t}) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$ for $\lambda > 0$.

X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i | X_{i-1}) = 0$

$\mathbb{P}(X_n - X_0 \geq t) \leq \mathbb{E}(e^{\lambda X_n}) / e^{\lambda t}$ for $\lambda > 0$
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i | X_{i-1}) = 0$

$\mathbb{P}(X_n - X_0 \geq t) \leq \mathbb{E}(e^{\lambda X_n}) e^{\lambda t}$ for $\lambda > 0$
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i | X_{i-1}) = 0$

$\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$ for $\lambda > 0$

$\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y | X))$

$= \mathbb{E}
\left(e^{\lambda(Y_n + X_{n-1})} \right) = \mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}}) = \mathbb{E}\left(\mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}} | X_{n-1}) \right)$
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i | X_{i-1}) = 0$ \hspace{1cm} $\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$ for $\lambda > 0$

$\mathbb{P}(X_n - X_0 \geq t) = \mathbb{P}(X_n \geq t) = \mathbb{P}(e^{\lambda X_n} \geq e^{\lambda t}) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$ for $\lambda > 0$

$= \mathbb{E} \left(e^{\lambda(Y_n+X_{n-1})} \right) = \mathbb{E} \left(e^{\lambda Y_n} e^{\lambda X_{n-1}} \right) = \mathbb{E} \left(\mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}} | X_{n-1}) \right)$

$= \mathbb{E} \left(e^{\lambda X_{n-1}} \mathbb{E}(e^{\lambda Y_n} | X_{n-1}) \right) \mathbb{E}(\mathbb{E}(f(X)g(X,Y) | X)) = \mathbb{E}(f(X)\mathbb{E}(g(X,Y) | X))$
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i | X_{i-1}) = 0$ \quad $\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$

for $\lambda > 0$

$\mathbb{P}(X_n - X_0 \geq t) = \mathbb{P}(X_n \geq t) = \mathbb{P}(e^{\lambda X_n} \geq e^{\lambda t}) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$

\[
\mathbb{E} \left(e^{\lambda(Y_n + X_{n-1})} \right) = \mathbb{E} \left(e^{\lambda Y_n} e^{\lambda X_{n-1}} \right) = \mathbb{E} \left(\mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}} | X_{n-1}) \right) \\
= \mathbb{E} \left(e^{\lambda X_{n-1}} \mathbb{E}(e^{\lambda Y_n} | X_{n-1}) \right)
\]
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i | X_{i-1}) = 0$

$\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$ for $\lambda > 0$

$\mathbb{P}(X_n - X_0 \geq t) = \mathbb{P}(X_n \geq t) = \mathbb{P}(e^{\lambda X_n} \geq e^{\lambda t}) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$

$= \mathbb{E} \left(e^{\lambda (Y_n + X_{n-1})} \right) = \mathbb{E} \left(e^{\lambda Y_n} e^{\lambda X_{n-1}} \right) = \mathbb{E} \left(\mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}} | X_{n-1}) \right)$

$= \mathbb{E} \left(e^{\lambda X_{n-1}} \mathbb{E}(e^{\lambda Y_n} | X_{n-1}) \right)$

For any random variable $Z \in [a, b]$ with $\mathbb{E}(Z) = 0$,

$\mathbb{E}(e^{\lambda Z}) \leq \exp \left(\frac{\lambda^2 (b-a)^2}{8} \right)$
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i | X_{i-1}) = 0$

$\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$ for $\lambda > 0$

$$
\mathbb{E} \left(e^{\lambda (Y_n + X_{n-1})} \right) = \mathbb{E} \left(e^{\lambda Y_n} e^{\lambda X_{n-1}} \right) = \mathbb{E} \left(\mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}} | X_{n-1}) \right)
$$

$$
= \mathbb{E} \left(e^{\lambda X_{n-1}} \mathbb{E}(e^{\lambda Y_n} | X_{n-1}) \right)
$$

For any random variable $Z \in [a, b]$ with $\mathbb{E}(Z) = 0$,

$$
\mathbb{E}(e^{\lambda Z}) \leq \exp \left(\frac{\lambda^2 (b-a)^2}{8} \right)
$$

let $Z_n = (Y_n | X_{n-1})$
\(X_0, X_1, \ldots \) is a martingale, with \(X_0 = 0 \), and \(|X_k - X_{k-1}| \leq c_k \)

\(Y_i = X_i - X_{i-1} \), thus \(\mathbb{E}(Y_i|X_{i-1}) = 0 \)

\(\mathbb{P}(X_n - X_0 \geq t) \leq \mathbb{P}(X_n \geq t) = \mathbb{P}(e^{\lambda X_n} \geq e^{\lambda t}) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}} \) for \(\lambda > 0 \)

\[= \mathbb{E} \left(e^{\lambda(Y_n + X_{n-1})} \right) = \mathbb{E} \left(e^{\lambda Y_n} e^{\lambda X_{n-1}} \right) = \mathbb{E} \left(\mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}} | X_{n-1}) \right) \]

\[= \mathbb{E} \left(e^{\lambda X_{n-1}} \mathbb{E}(e^{\lambda Y_n} | X_{n-1}) \right) \]

For any random variable \(Z \in [a, b] \) with \(\mathbb{E}(Z) = 0 \),

\[\mathbb{E}(e^{\lambda Z}) \leq \exp \left(\frac{\lambda^2 (b-a)^2}{8} \right) \]

let \(Z_n = (Y_n | X_{n-1}) \)

\[\mathbb{E}(Z_n) = \mathbb{E}(Y_n | X_{n-1}) = 0 \]
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i | X_{i-1}) = 0$

$\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$ for $\lambda > 0$

\[
\mathbb{P}(X_n - X_0 \geq t) = \mathbb{P}(X_n \geq t) = \mathbb{P}(e^{\lambda X_n} \geq e^{\lambda t}) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}
\]

For any random variable $Z \in [a, b]$ with $\mathbb{E}(Z) = 0$,

$\mathbb{E}(e^{\lambda Z}) \leq \exp \left(\frac{\lambda^2 (b-a)^2}{8} \right)$

let $Z_n = (Y_n | X_{n-1})$

$\mathbb{E}(Z_n) = \mathbb{E}(Y_n | X_{n-1}) = 0$

$Z_n \in [-c_n, c_n]$
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i \mid X_{i-1}) = 0$

$\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$ for $\lambda > 0$

\[= \mathbb{E}\left(e^{\lambda(Y_n + X_{n-1})}\right) = \mathbb{E}\left(e^{\lambda Y_n} e^{\lambda X_{n-1}}\right) = \mathbb{E}\left(\mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}} \mid X_{n-1})\right) \]

\[= \mathbb{E}\left(e^{\lambda X_{n-1}} \mathbb{E}(e^{\lambda Y_n} \mid X_{n-1})\right) \]

\[\leq \exp\left(\frac{\lambda^2 4c_n^2}{8}\right) = \exp\left(\frac{\lambda c_n^2}{2}\right) \]

For any random variable $Z \in [a, b]$ with $\mathbb{E}(Z) = 0$,

$\mathbb{E}(e^{\lambda Z}) \leq \exp\left(\frac{\lambda^2 (b-a)^2}{8}\right)$

let $Z_n = (Y_n \mid X_{n-1})$

$\mathbb{E}(Z_n) = \mathbb{E}(Y_n \mid X_{n-1}) = 0$

$Z_n \in [-c_n, c_n]$
\(X_0, X_1, \ldots \) is a martingale, with \(X_0 = 0 \), and \(|X_k - X_{k-1}| \leq c_k \)

\[Y_i = X_i - X_{i-1}, \text{ thus } \mathbb{E}(Y_i | X_{i-1}) = 0 \]

\[\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}} \text{ for } \lambda > 0 \]

\[
\mathbb{P}(X_n - X_0 \geq t) = \mathbb{P}(X_n \geq t) = \mathbb{P}(e^{\lambda X_n} \geq e^{\lambda t}) \leq \frac{\mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}})}{e^{\lambda t}} \leq \mathbb{E}(e^{\lambda Y_n} | X_{n-1}) \leq \mathbb{E}(e^{\lambda X_{n-1}} e^{\lambda^2 c_n^2/2}) = e^{\lambda^2 c_n^2/2} \mathbb{E}(e^{\lambda X_{n-1}})
\]

\[\leq \exp\left(\frac{\lambda^2 c_n^2}{8}\right) = \exp\left(\frac{\lambda c_n^2}{2}\right) \]

For any random variable \(Z \in [a, b] \) with \(\mathbb{E}(Z) = 0 \),

\[\mathbb{E}(e^{\lambda Z}) \leq \exp\left(\frac{\lambda^2(b-a)^2}{8}\right) \]

let \(Z_n = (Y_n | X_{n-1}) \)

\[\mathbb{E}(Z_n) = \mathbb{E}(Y_n | X_{n-1}) = 0 \]

\(Z_n \in [-c_n, c_n] \)
X_0, X_1, \cdots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i | X_{i-1}) = 0$

$\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$ for $\lambda > 0$

$\mathbb{P}(X_n - X_0 \geq t) = \mathbb{P}(X_n \geq t) = \mathbb{P}(e^{\lambda X_n} \geq e^{\lambda t}) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$

$= \mathbb{E}\left(e^{\lambda (Y_n + X_{n-1})}\right) = \mathbb{E}\left(e^{\lambda Y_n} e^{\lambda X_{n-1}}\right) = \mathbb{E}\left(\mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}} | X_{n-1})\right)$

$= \mathbb{E}\left(e^{\lambda X_{n-1}} \mathbb{E}(e^{\lambda Y_n} | X_{n-1})\right) \leq \mathbb{E}\left(e^{\lambda X_{n-1}} e^{\lambda^2 c_n^2/2}\right) = e^{\lambda^2 c_n^2/2} \mathbb{E}\left(e^{\lambda X_{n-1}}\right)$

$\leq e^{\lambda^2 c_n^2/2} e^{\lambda^2 c_{n-1}^2/2} \mathbb{E}(e^{\lambda X_{n-2}}) \leq \cdots \leq \left(\prod_{k=1}^{n} e^{\lambda^2 c_k^2/2}\right) \mathbb{E}(e^{\lambda X_0}) = e^{(\lambda^2/2) \sum_{k=1}^{n} c_k^2}$

$\leq \exp\left(\frac{\lambda^2 4c_n^2}{8}\right) = \exp\left(\frac{\lambda c_n^2}{2}\right)$

Let $Z_n = (Y_n | X_{n-1})$

$\mathbb{E}(Z_n) = \mathbb{E}(Y_n | X_{n-1}) = 0$

$Z_n \in [-c_n, c_n]$
X_0, X_1, \ldots is a martingale, with $X_0 = 0$, and $|X_k - X_{k-1}| \leq c_k$

$Y_i = X_i - X_{i-1}$, thus $\mathbb{E}(Y_i \mid X_{i-1}) = 0$

$\mathbb{P}(X_n - X_0 \geq t) \leq \frac{\mathbb{E}(e^{\lambda X_n})}{e^{\lambda t}}$

$\leq \frac{e^{(\lambda^2/2)\sum_{k=1}^{n} c_k^2}}{e^{\lambda t}} = \exp \left(-\frac{t^2}{2\sum_{k=1}^{n} c_k^2} \right)$

minimized when $\lambda = \frac{t}{\sum_{k=1}^{n} c_k^2}$

$\mathbb{E} \left(e^{\lambda(Y_n + X_{n-1})} \right) = \mathbb{E} \left(e^{\lambda Y_n} e^{\lambda X_{n-1}} \right) = \mathbb{E} \left(\mathbb{E}(e^{\lambda Y_n} e^{\lambda X_{n-1}} \mid X_{n-1}) \right)$

$= \mathbb{E} \left(e^{\lambda X_{n-1}} \mathbb{E}(e^{\lambda Y_n} \mid X_{n-1}) \right) \leq \mathbb{E} \left(e^{\lambda X_{n-1}} e^{\lambda^2 c_n^2/2} \right) = e^{\lambda^2 c_n^2/2} \mathbb{E}(e^{\lambda X_{n-1}})$

$\leq e^{\lambda^2 c_n^2/2} e^{\lambda^2 c_{n-1}^2/2} \mathbb{E}(e^{\lambda X_{n-2}}) \leq \ldots \leq \left(\prod_{k=1}^{n} e^{\lambda^2 c_k^2/2} \right) \mathbb{E}(e^{\lambda X_0}) = e^{(\lambda^2/2)\sum_{k=1}^{n} c_k^2}$

$\leq \exp \left(\frac{\lambda^2 c_n^2}{8} \right) = \exp \left(\frac{\lambda c_n^2}{2} \right)$

let $Z_n = (Y_n \mid X_{n-1})$

$\mathbb{E}(Z_n) = \mathbb{E}(Y_n \mid X_{n-1}) = 0$

$Z_n \in [-c_n, c_n]$

For any random variable $Z \in [a, b]$ with $\mathbb{E}(Z) = 0$, $\mathbb{E}(e^{\lambda Z}) \leq \exp \left(\frac{\lambda^2(b-a)^2}{8} \right)$
Proving Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(X_n - X_0 \geq t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

$$\mathbb{P}(X_n - X_0 \leq -t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$
Proving Azuma’s Inequality

Let X_0, X_1, \cdots be a martingale such that for all $k \geq 1$,

$$|X_k - X_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(X_n - X_0 \geq t) \leq \exp\left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2}\right)$$

$$\mathbb{P}(X_n - X_0 \leq -t) \leq \exp\left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2}\right)$$
Proving Azuma’s Inequality

Let \(X_0, X_1, \cdots \) be a martingale such that for all \(k \geq 1 \),
\[
|X_k - X_{k-1}| \leq c_k
\]
Then,
\[
\mathbb{P}(X_n - X_0 \geq t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)
\]
\[
\mathbb{P}(X_n - X_0 \leq -t) \leq \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)
\]

let \(X_i' = -X_i \)
\[
\mathbb{P}(X_n - X_0 \leq -t) = \mathbb{P}((-X_i') - (-X_0') \leq -t) = \mathbb{P}(X_i' - X_0' \geq t) \leq \cdots
\]
Generalized Martingales

A sequence of random variables Y_0, Y_1, \cdots is a martingale with respect to the sequence X_0, X_1, \cdots if for all $i \geq 0$,

- Y_i is a function of X_0, X_1, \cdots, X_i
- $\mathbb{E}(Y_{i+1} \mid X_0, X_1, \cdots, X_i) = Y_i$
Generalized Martingales

A sequence of random variables Y_0, Y_1, \cdots is a martingale with respect to the sequence X_0, X_1, \cdots if for all $i \geq 0$,

- Y_i is a function of X_0, X_1, \cdots, X_i
- $\mathbb{E}(Y_{i+1} \mid X_0, X_1, \cdots, X_i) = Y_i$

betting on a fair game

X_i: gain/loss of the i^{th} bet

Y_i: wealth after the i^{th} bet
Generalized Martingales

A sequence of random variables Y_0, Y_1, \cdots is a martingale with respect to the sequence X_0, X_1, \cdots if for all $i \geq 0$,

- Y_i is a function of X_0, X_1, \cdots, X_i
- $\mathbb{E}(Y_{i+1} \mid X_0, X_1, \cdots, X_i) = Y_i$

betting on a fair game

X_i: gain/loss of the i^{th} bet

Y_i: wealth after the i^{th} bet \leftarrow martingale (since game is fair)
Generalized Azuma’s Inequality

Let Y_0, Y_1, \cdots be a martingale with respect to X_0, X_1, \cdots such that for all $k \geq 1$,

$$|Y_k - Y_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|Y_n - Y_0| \geq t) \leq 2 \exp \left(- \frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$
Azuma’s Inequality
martingale X_0, X_1, \ldots
with $|X_k - X_{k-1}| \leq c_k$,
then $\mathbb{P}(|X_n - X_0| \geq t) \leq \cdots$

generalization

Generalized Azuma’s Inequality
martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
with $|Y_k - Y_{k-1}| \leq c_k$,
then $\mathbb{P}(|Y_n - Y_0| \geq t) \leq \cdots$

generalization

martingale X_0, X_1, \ldots, X_n
$\mathbb{E}(X_i \mid X_0, X_1, \ldots, X_{i-1}) = X_{i-1}$

martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
$Y_i = f(X_0, X_1, \ldots, X_i)$
$\mathbb{E}(Y_i \mid X_0, X_1, \ldots, X_{i-1}) = Y_{i-1}$
The Doob sequence of a function f with respect to a sequence of random variables X_1, X_2, \cdots, X_n is

$$Y_i = \mathbb{E} \left(f(X_1, \cdots, X_n) \mid X_1, \cdots, X_i \right)$$

In particular,

$$Y_0 = \mathbb{E} \left(f(X_1, \cdots, X_n) \right), \text{ and } Y_n = f(X_1, \cdots, X_n)$$
Doob Sequence

\[f(\text{\$}, \text{\$}, \text{\$}, \text{\$}) \]
Doob Sequence

\[f(\, \, , \, , \, , \, , \,) \]

average over

no information

\[\mathbb{E}(f) \]
Doob Sequence

\[f(1, \ldots, \ldots) \]

randomized by

\[\mathbb{E}(f) \longrightarrow \mathbb{E}(f|X_1) \]

no information
Doob Sequence

\[f(1, 0), \quad \mathbb{E}(f|X_1), \quad \mathbb{E}(f|X_2) \]

randomized by

no information

\[\mathbb{E}(f) \rightarrow \mathbb{E}(f|X_1) \rightarrow \mathbb{E}(f|X_2) \]
Doob Sequence

\[f(1, 0, 0, \cdots) \]

randomized by

average over

no information

\[
\mathbb{E}(f) \rightarrow \mathbb{E}(f|X_1) \rightarrow \mathbb{E}(f|X_2) \rightarrow \mathbb{E}(f|X_3)
\]
Doob Sequence

\[f(1, 0, 0, 1) \]

randomized by

\[
\begin{align*}
\mathbb{E}(f) &\rightarrow \mathbb{E}(f|X_1) \\
&\rightarrow \mathbb{E}(f|X_2) \\
&\rightarrow \mathbb{E}(f|X_3) \\
&\rightarrow \mathbb{E}(f|X_4) = f(X_4)
\end{align*}
\]
The Doob sequence of a function f with respect to a sequence of random variables X_1, X_2, \ldots, X_n is

$$Y_i = \mathbb{E}(f(X_1, \ldots, X_n) \mid X_1, \ldots, X_i)$$

The Doob sequence of a function f is a martingale. That is,

$$\mathbb{E}(Y_i \mid X_1, \ldots, X_{i-1}) = Y_{i-1}$$
The Doob sequence of a function f with respect to a sequence of random variables X_1, X_2, \cdots, X_n is

$$Y_i = \mathbb{E}(f(X_1, \cdots, X_n) \mid X_1, \cdots, X_i)$$

The Doob sequence of a function f is a martingale. That is,

$$\mathbb{E}(Y_i \mid X_1, \cdots, X_{i-1}) = Y_{i-1}$$

$$\mathbb{E}(Y_i \mid X_{i-1}) = \mathbb{E}(\mathbb{E}(f(X_n) \mid X_i) \mid X_{i-1})$$
Doob Martingale

The Doob sequence of a function f with respect to a sequence of random variables X_1, X_2, \cdots, X_n is

$$Y_i = \mathbb{E}(f(X_1, \cdots, X_n) \mid X_1, \cdots, X_i)$$

The Doob sequence of a function f is a martingale. That is,

$$\mathbb{E}(Y_i \mid X_1, \cdots, X_{i-1}) = Y_{i-1}$$

$$\mathbb{E}(Y_i \mid X_{i-1}) = \mathbb{E}(\mathbb{E}(f(X_n) \mid X_i) \mid X_{i-1})$$

$$= \mathbb{E}(f(X_n) \mid X_{i-1})$$

$$\mathbb{E}(Y \mid Z) = \mathbb{E}(\mathbb{E}(Y \mid X, Z) \mid Z)$$
The Doob sequence of a function f with respect to a sequence of random variables X_1, X_2, \ldots, X_n is

$$Y_i = \mathbb{E}(f(X_1, \ldots, X_n) \mid X_1, \ldots, X_i)$$

The Doob sequence of a function f is a martingale. That is,

$$\mathbb{E}(Y_i \mid X_1, \ldots, X_{i-1}) = Y_{i-1}$$

$$\mathbb{E}(Y_i \mid X_{i-1}) = \mathbb{E}(\mathbb{E}(f(X_n) \mid X_i) \mid X_{i-1})$$

$$= \mathbb{E}(f(X_n) \mid X_{i-1})$$

$$= Y_{i-1}$$
$G_{n,p}$
Graph parameter: $f(G)$

Example: components number, chromatic number, diameter
Graph parameter: $f(G)$

Example: components number, chromatic number, diameter

numbering all vertex pairs: $1, 2, 3, \ldots, \binom{n}{2}$
Graph parameter: $f(G)$

Example: components number, chromatic number, diameter

numbering all vertex pairs: $1, 2, 3, \ldots, \binom{n}{2}$

Define i.r.v. $I_j = \begin{cases} 1 & \text{edge } j \in G \\ 0 & \text{edge } j \notin G \end{cases}$
Graph parameter: $f(G)$

\textbf{Example}: components number, chromatic number, diameter

numbering all vertex pairs: $1, 2, 3, \ldots, \binom{n}{2}$

Define i.r.v. $I_j = \begin{cases} 1 & \text{edge } j \in G \\ 0 & \text{edge } j \notin G \end{cases} \quad Y_i = \mathbb{E}(f(G) \mid I_1, \ldots, I_i)$
Graph parameter: $f(G)$

Example: components number, chromatic number, diameter

Numbering all vertex pairs: $1, 2, 3, \ldots, \binom{n}{2}$

Define i.r.v. $I_j = \begin{cases} 1 & \text{edge } j \in G \\ 0 & \text{edge } j \notin G \end{cases}$

$Y_i = \mathbb{E}(f(G) | I_1, \ldots, I_i)$

$Y_0, Y_1, \ldots, Y_{\binom{n}{2}}$ is a Doob sequence, called *edge exposure martingale*

In particular, $Y_0 = \mathbb{E}(f(G))$, and $Y_{\binom{n}{2}} = f(G)$
Graph parameter: $f(G)$

Example: components number, chromatic number, diameter

numbering all vertices: 1, 2, 3, ..., n
Graph parameter: $f(G)$

Example: components number, chromatic number, diameter

numbering all vertices: $1, 2, 3, \ldots, n$

X_i: subgraph of G induced by the first i vertices
Graph parameter: $f(G)$

Example: components number, chromatic number, diameter

numbering all vertices: $1, 2, 3, \cdots, n$

X_i: subgraph of G induced by the first i vertices

$Y_i = \mathbb{E}(f(G) | X_1, \cdots, X_i)$
Graph parameter: $f(G)$

Example: components number, chromatic number, diameter

numbering all vertices: $1, 2, 3, \cdots, n$

X_i: subgraph of G induced by the first i vertices

$$Y_i = \mathbb{E}(f(G) | X_1, \cdots, X_i)$$

Y_0, Y_1, \cdots, Y_n is a Doob sequence, called vertex exposure martingale.

In particular, $Y_0 = \mathbb{E}(f(G))$, and $Y_n = f(G)$
numbering all vertices: 1, 2, 3, ⋯, n

X_i: subgraph of G induced by the first i vertices

$Y_i = \mathbb{E}(\chi(G) | X_1, \cdots, X_i)$

Y_0, Y_1, \cdots, Y_n is a Doob sequence (vertex exposure martingale)
In particular, $Y_0 = \mathbb{E}(\chi(G))$, and $Y_n = \chi(G)$
Generalized Azuma’s Inequality in Action

Concentration of Chromatic Number

chromatic number $\chi(G)$

X_i: subgraph of G induced by the first i vertices

$Y_i = \mathbb{E}(\chi(G) | X_1, \ldots, X_i)$

Y_0, Y_1, \ldots, Y_n a Doob martingale: $Y_0 = \mathbb{E}(\chi(G))$, and $Y_n = \chi(G)$
Generalized Azuma’s Inequality in Action

Concentration of Chromatic Number

\(\chi(\mathcal{G}) \) chromatic number

\(X_i \): subgraph of \(G \) induced by the first \(i \) vertices

\(Y_i = \mathbb{E}(\chi(G) | X_1, \ldots, X_i) \)

\(Y_0, Y_1, \ldots, Y_n \) a Doob martingale: \(Y_0 = \mathbb{E}(\chi(G)) \), and \(Y_n = \chi(G) \)

Let \(Y_0, Y_1, \ldots \) be a martingale with respect to \(X_0, X_1, \ldots \) such that for all \(k \geq 1 \),

\[|Y_k - Y_{k-1}| \leq c_k \]

Then,

\[\mathbb{P}(|Y_n - Y_0| \geq t) \leq 2 \exp \left(- \frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right) \]
Let Y_0, Y_1, \cdots be a martingale with respect to X_0, X_1, \cdots such that for all $k \geq 1$,

$$|Y_k - Y_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|Y_n - Y_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$

X_i: subgraph of G induced by the first i vertices

$Y_i = \mathbb{E}(\chi(G) | X_1, \cdots, X_i)$

Y_0, Y_1, \cdots, Y_n a Doob martingale: $Y_0 = \mathbb{E}(\chi(G))$, and $Y_n = \chi(G)$

A new vertex can always be given a new color!
Generalized Azuma’s Inequality in Action

Concentration of Chromatic Number

\[\chi(G) \]

\(X_i \): subgraph of \(G \) induced by the first \(i \) vertices

\[Y_i = \mathbb{E}(\chi(G) | X_1, \ldots, X_i) \]

\(Y_0, Y_1, \ldots, Y_n \) a Doob martingale: \(Y_0 = \mathbb{E}(\chi(G)) \), and \(Y_n = \chi(G) \)

A new vertex can always be given a new color!

\[|Y_i - Y_{i-1}| \leq 1 \]
Generalized Azuma's Inequality in Action

Concentration of Chromatic Number

chromatic number \(\chi(G)\)

\(X_i\): subgraph of \(G\) induced by the first \(i\) vertices

\(Y_i = \mathbb{E}(\chi(G) | X_1, \ldots, X_i)\)

\(Y_0, Y_1, \ldots, Y_n\) a Doob martingale: \(Y_0 = \mathbb{E}(\chi(G))\), and \(Y_n = \chi(G)\)

A new vertex can always be given a new color!

\[|Y_i - Y_{i-1}| \leq 1 \]

\[
\mathbb{P}(|\chi(G) - \mathbb{E}(\chi(G))| \geq t\sqrt{n}) = \mathbb{P}(|Y_n - Y_0| \geq t\sqrt{n}) \leq 2e^{-t^2/2}
\]
Theorem [Shamir & Spencer (1987)]:
Let $G \sim G(n, p)$, then:

$$\mathbb{P}(|\chi(G) - \mathbb{E}(\chi(G))| \geq t\sqrt{n}) \leq 2e^{-t^2/2}$$
Azuma’s Inequality

Martingale X_0, X_1, \ldots

With $|X_k - X_{k-1}| \leq c_k$,
then $\mathbb{P}(|X_n - X_0| \geq t) \leq \cdots$

Generalized Azuma’s Inequality

Martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots

With $|Y_k - Y_{k-1}| \leq c_k$,
then $\mathbb{P}(|Y_n - Y_0| \geq t) \leq \cdots$

Martingale X_0, X_1, \ldots, X_n

$\mathbb{E}(X_i \mid X_0, X_1, \ldots, X_{i-1}) = X_{i-1}$

generalization

Martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots

$Y_i = f(X_0, X_1, \ldots, X_i)$

$\mathbb{E}(Y_i \mid X_0, X_1, \ldots, X_{i-1}) = Y_{i-1}$

generalization
Azuma’s Inequality

martingale X_0, X_1, \ldots
with $|X_k - X_{k-1}| \leq c_k$, then $\mathbb{P}(|X_n - X_0| \geq t) \leq \ldots$

generalization

Generalized Azuma’s Inequality

martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
with $|Y_k - Y_{k-1}| \leq c_k$, then $\mathbb{P}(|Y_n - Y_0| \geq t) \leq \ldots$

generalization

martingale X_0, X_1, \ldots, X_n
$\mathbb{E}(X_i \mid X_0, X_1, \ldots, X_{i-1}) = X_{i-1}$
generalization

martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
$Y_i = f(X_0, X_1, \ldots, X_i)$
$\mathbb{E}(Y_i \mid X_0, X_1, \ldots, X_{i-1}) = Y_{i-1}$
special case

Doob martingale Y_0, Y_1, \ldots
$Y_i = \mathbb{E}(f(X_0, X_1, \ldots, X_n) \mid X_0, X_1, \ldots, X_{i-1})$
Azuma’s Inequality
martingale X_0, X_1, \ldots
with $|X_k - X_{k-1}| \leq c_k$,
then $\mathbb{P}(|X_n - X_0| \geq t) \leq \ldots$

generalization

Generalized Azuma’s Inequality
martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
with $|Y_k - Y_{k-1}| \leq c_k$,
then $\mathbb{P}(|Y_n - Y_0| \geq t) \leq \ldots$

Doob martingale Y_0, Y_1, \ldots
$Y_i = \mathbb{E}(f(X_0, X_1, \ldots, X_n) \mid X_0, X_1, \ldots, X_{i-1})$

special case

martingale X_0, X_1, \ldots, X_n
$\mathbb{E}(X_i \mid X_0, X_1, \ldots, X_{i-1}) = X_{i-1}$
generalization

generalization

verteX exposure martingale

applied in random graphs
Azuma’s Inequality
martingale X_0, X_1, \ldots
with $|X_k - X_{k-1}| \leq c_k$,
then $\mathbb{P}(|X_n - X_0| \geq t) \leq \ldots$

generalization

Generalized Azuma’s Inequality
martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
with $|Y_k - Y_{k-1}| \leq c_k$,
then $\mathbb{P}(|Y_n - Y_0| \geq t) \leq \ldots$

generalization

Sample Application:
Tight Concentration of Chromatic number

Martingale X_0, X_1, \ldots, X_n
$\mathbb{E}(X_i \mid X_0, X_1, \ldots, X_{i-1}) = X_{i-1}$
generalization

Martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
$Y_i = f(X_0, X_1, \ldots, X_i)$
$\mathbb{E}(Y_i \mid X_0, X_1, \ldots, X_{i-1}) = Y_{i-1}$
special case

Doob martingale Y_0, Y_1, \ldots
$Y_i = \mathbb{E}(f(X_0, X_1, \ldots, X_n) \mid X_0, X_1, \ldots, X_{i-1})$
applied in random graphs

Vertex exposure martingale
Doob Martingale +
Generalized Azuma’s Inequality

• for a function of (potentially dependent) r.v.:
 \[f(X_1, X_2, \ldots, X_n) \]

• define corresponding Doob martingale:
 \[Y_i = \mathbb{E}(f(X_1, \ldots, X_n) \mid X_1, \ldots, X_i) \]

 in particular, \(Y_0 = \mathbb{E}(f(X_1, \ldots, X_n)) \) and \(Y_n = f(X_1, \ldots, X_n) \)

• as long as the differences \(|Y_i - Y_{i-1}| \) are bounded

• generalized Azuma’s inequality implies \(|Y_n - Y_0| \) is bounded

\[f(X_1, \ldots, X_n) \text{ is tightly concentration to its expectation} \]
The Method of Averaged Bounded Differences

Let $X = (X_1, \ldots, X_n)$ and let f be a function of X_0, X_1, \ldots, X_n satisfying that, for all $1 \leq i \leq n$,

$$| \mathbb{E}(f(X) \mid X_1, \ldots, X_i) - \mathbb{E}(f(X) \mid X_1, \ldots, X_{i-1}) | \leq c_i$$

Then,

$$\mathbb{P}(|f(X) - \mathbb{E}(f(X))| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right)$$
The Method of Averaged Bounded Differences

Let $X = (X_1, \ldots, X_n)$ and let f be a function of X_0, X_1, \ldots, X_n satisfying that, for all $1 \leq i \leq n$,

$$\left| \mathbb{E}(f(X) \mid X_1, \ldots, X_i) - \mathbb{E}(f(X) \mid X_1, \ldots, X_{i-1}) \right| \leq c_i$$

Then,

$$\mathbb{P}(\left| f(X) - \mathbb{E}(f(X)) \right| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right)$$

Doob Martingale
The Method of Averaged Bounded Differences

Let $X = (X_1, \cdots, X_n)$ and let f be a function of X_0, X_1, \cdots, X_n satisfying that, for all $1 \leq i \leq n$,

$$|\mathbb{E}(f(X) \mid X_1, \cdots, X_i) - \mathbb{E}(f(X) \mid X_1, \cdots, X_{i-1})| \leq c_i$$

Then,

$$\mathbb{P}(|f(X) - \mathbb{E}(f(X))| \geq t) \leq 2 \exp\left(-\frac{t^2}{2 \sum_{i=1}^{n} c_i^2}\right)$$

Doob Martingale + Generalized Azuma’s Inequality
Let \(X = (X_1, \cdots, X_n) \) and let \(f \) be a function of \(X_0, X_1, \cdots, X_n \) satisfying that, for all \(1 \leq i \leq n \),

\[
| \mathbb{E}(f(X) \mid X_1, \cdots, X_i) - \mathbb{E}(f(X) \mid X_1, \cdots, X_{i-1}) | \leq c_i
\]

Then,

\[
\mathbb{P}(|f(X) - \mathbb{E}(f(X))| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right)
\]
The Method of Averaged Bounded Differences

Let $X = (X_1, \cdots, X_n)$ and let f be a function of X_0, X_1, \cdots, X_n satisfying that, for all $1 \leq i \leq n$,

$$\left| \mathbb{E}(f(X) \mid X_1, \cdots, X_i) - \mathbb{E}(f(X) \mid X_1, \cdots, X_{i-1}) \right| \leq c_i$$

Then, May be hard to check!

$$\mathbb{P}(|f(X) - \mathbb{E}(f(X))| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right)$$
\[| \mathbb{E}(f(X) \mid X_1, \ldots, X_i) - \mathbb{E}(f(X) \mid X_1, \ldots, X_{i-1}) | \leq c_i \]
Lipschitz Condition

\[| \mathbb{E}(f(X) \mid X_1, \cdots, X_i) - \mathbb{E}(f(X) \mid X_1, \cdots, X_{i-1}) | \leq c_i \]

A function \(f(X_1, \cdots, X_n) \) satisfies the **Lipschitz condition** with constants \(c_i \) where \(1 \leq i \leq n \), if

\[| f(x_1, \cdots, x_{i-1}, x_i, x_{i+1}, x_n) - f(x_1, \cdots, x_{i-1}, y_i, x_{i+1}, x_n) | \leq c_i \]
Average-case:
\[| \mathbb{E}(f(X) \mid X_1, \ldots, X_i) - \mathbb{E}(f(X) \mid X_1, \ldots, X_{i-1}) | \leq c_i \]

Worst-case:
A function \(f(X_1, \cdots, X_n) \) satisfies the *Lipschitz condition* with constants \(c_i \) where \(1 \leq i \leq n \), if
\[
| f(x_1, \cdots, x_{i-1}, x_i, x_{i+1}, x_n) - f(x_1, \cdots, x_{i-1}, y_i, x_{i+1}, x_n) | \leq c_i
\]
Let $\mathbf{X} = (X_1, \cdots, X_n)$ be n independent random variables and let $f(\mathbf{X})$ be a function satisfying the Lipschitz condition with constants c_i where $1 \leq i \leq n$, then:

$$
P(|f(\mathbf{X}) - \mathbb{E}(f(\mathbf{X}))| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right)$$
Let $X = (X_1, \cdots, X_n)$ and let f be a function of X_0, X_1, \cdots, X_n satisfying that, for all $1 \leq i \leq n,$

$$|\mathbb{E}(f(X) \mid X_1, \cdots, X_i) - \mathbb{E}(f(X) \mid X_1, \cdots, X_{i-1})| \leq c_i$$

Then,

$$\mathbb{P}(|f(X) - \mathbb{E}(f(X))| \geq t) \leq 2 \exp \left(- \frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right)$$

Let $X = (X_1, \cdots, X_n)$ be n independent random variables and let $f(X)$ be a function satisfying the Lipschitz condition with constants c_i where $1 \leq i \leq n,$ then:

$$\mathbb{P}(|f(X) - \mathbb{E}(f(X))| \geq t) \leq 2 \exp \left(- \frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right)$$
Let $\mathbf{X} = (X_1, \cdots, X_n)$ and let f be a function of X_0, X_1, \cdots, X_n satisfying that, for all $1 \leq i \leq n$,

$$|\mathbb{E}(f(\mathbf{X}) \mid X_1, \cdots, X_i) - \mathbb{E}(f(\mathbf{X}) \mid X_1, \cdots, X_{i-1})| \leq c_i$$

Then,

$$\mathbb{P}(|f(\mathbf{X}) - \mathbb{E}(f(\mathbf{X}))| \geq t) \leq 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} c_i^2}\right)$$

Let $\mathbf{X} = (X_1, \cdots, X_n)$ be n independent random variables and let $f(\mathbf{X})$ be a function satisfying the Lipschitz condition with constants c_i where $1 \leq i \leq n$, then:

$$\mathbb{P}(|f(\mathbf{X}) - \mathbb{E}(f(\mathbf{X}))| \geq t) \leq 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} c_i^2}\right)$$

\[\text{Lipschitz condition} + \text{Independence} \quad \Rightarrow \quad |\mathbb{E}(f(\mathbf{X})|X_1, \cdots, X_i) - \mathbb{E}(f(\mathbf{X})|X_1, \cdots, X_{i-1})| \leq c_i \]
Azuma’s Inequality

Martingale X_0, X_1, \ldots

with $|X_k - X_{k-1}| \leq c_k$,
then $\mathbb{P}(|X_n - X_0| \geq t) \leq \ldots$

generalization

Generalized Azuma’s Inequality

Martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots

with $|Y_k - Y_{k-1}| \leq c_k$,
then $\mathbb{P}(|Y_n - Y_0| \geq t) \leq \ldots$

generalization

generalization

martingale X_0, X_1, \ldots, X_n

$\mathbb{E}(X_i \mid X_0, X_1, \ldots, X_{i-1}) = X_{i-1}$

generalization

martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots

$Y_i = f(X_0, X_1, \ldots, X_i)$

$\mathbb{E}(Y_i \mid X_0, X_1, \ldots, X_{i-1}) = Y_{i-1}$
special case

Doob martingale Y_0, Y_1, \ldots

$Y_i = \mathbb{E}(f(X_0, X_1, \ldots, X_n) \mid X_0, X_1, \ldots, X_{i-1})$

special case

Azuma’s Inequality
Azuma’s Inequality
martingale X_0, X_1, \ldots
with $|X_k - X_{k-1}| \leq c_k$,
then $\mathbb{P}(|X_n - X_0| \geq t) \leq \cdots$

Generalized Azuma’s Inequality
martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
with $|Y_k - Y_{k-1}| \leq c_k$,
then $\mathbb{P}(|Y_n - Y_0| \geq t) \leq \cdots$

The Method of Averaged Bounded Differences
$f(X)$ satisfying $|\mathbb{E}(f(X)|X_1, \ldots, X_i) - \mathbb{E}(f(X)|X_1, \ldots, X_{i-1})| \leq c_i$,
then $\mathbb{P}(|f(X) - \mathbb{E}(f(X))| \geq t) \leq \cdots$

martingale X_0, X_1, \ldots, X_n
$\mathbb{E}(X_i | X_0, X_1, \ldots, X_{i-1}) = X_{i-1}$
generalization

martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
$Y_i = f(X_0, X_1, \ldots, X_i)$
$\mathbb{E}(Y_i | X_0, X_1, \ldots, X_{i-1}) = Y_{i-1}$
special case

Doob martingale Y_0, Y_1, \ldots
$Y_i = \mathbb{E}(f(X_0, X_1, \ldots, X_n) | X_0, X_1, \ldots, X_{i-1})$
Azuma’s Inequality
martingale X_0, X_1, \ldots
with $|X_k - X_{k-1}| \leq c_k$,
then $\mathbb{P}(|X_n - X_0| \geq t) \leq \ldots$

Generalized Azuma’s Inequality
martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
with $|Y_k - Y_{k-1}| \leq c_k$,
then $\mathbb{P}(|Y_n - Y_0| \geq t) \leq \ldots$

Doob martingale Y_0, Y_1, \ldots
$Y_i = \mathbb{E}(f(X_0, X_1, \ldots, X_i) | X_0, X_1, \ldots, X_{i-1})$

The Method of Averaged Bounded Differences
$f(X)$ satisfying $|\mathbb{E}(f(X)|X_1, \ldots, X_i) - \mathbb{E}(f(X)|X_1, \ldots, X_{i-1})| \leq c_i$,
then $\mathbb{P}(|f(X) - \mathbb{E}(f(X))| \geq t) \leq \ldots$

The Method of Bounded Differences
$X = (X_1, \ldots, X_n)$ are independent r.v., $f(X)$ satisfying the Lipschitz condition,
then $\mathbb{P}(|f(X) - \mathbb{E}(f(X))| \geq t) \leq \ldots$

martingale X_0, X_1, \ldots, X_n
$\mathbb{E}(X_i | X_0, X_1, \ldots, X_{i-1}) = X_{i-1}$
generalization

martingale Y_0, Y_1, \ldots w.r.t. X_0, X_1, \ldots
$Y_i = f(X_0, X_1, \ldots, X_i)$
$\mathbb{E}(Y_i | X_0, X_1, \ldots, X_{i-1}) = Y_{i-1}$
special case

generalization
The Method of Bounded Differences in Action:

Pattern Matching

- a random string of length \(n \)
- a pattern of length \(k \)
- # of matched substrings?
The Method of Bounded Differences in Action:

Pattern Matching

- a random string of length n
- a pattern of length k
- # of matched substrings?

an alphabet Σ with $|\Sigma| = m$, a fixed pattern $\pi \in \Sigma^k$
The Method of Bounded Differences in Action:
Pattern Matching

- a random string of length n
- a pattern of length k
- # of matched substrings?

an alphabet Σ with $|\Sigma| = m$, a fixed pattern $\pi \in \Sigma^k$

independently and uniformly generate: $X_1, X_2, \ldots, X_n \in \Sigma$

let Y be number of substrings π in $\langle X_1, X_2, \ldots, X_n \rangle$
The Method of Bounded Differences in Action: Pattern Matching

- a random string of length \(n \)
- a pattern of length \(k \)
- \# of matched substrings?

an alphabet \(\Sigma \) with \(|\Sigma| = m \), a fixed pattern \(\pi \in \Sigma^k \)

independently and uniformly generate: \(X_1, X_2, \ldots, X_n \in \Sigma \)

let \(Y \) be number of substrings \(\pi \) in \(\langle X_1, X_2, \ldots, X_n \rangle \)

\[
\mathbb{E}(Y) = (n - k + 1) \left(\frac{1}{m} \right)^k
\]
The Method of Bounded Differences in Action: Pattern Matching

• a random string of length n
• a pattern of length k
• # of matched substrings?

an alphabet Σ with $|\Sigma| = m$, a fixed pattern $\pi \in \Sigma^k$

independently and uniformly generate: $X_1, X_2, \cdots, X_n \in \Sigma$

let Y be number of substrings π in $\langle X_1, X_2, \cdots, X_n \rangle$

\[\mathbb{E}(Y) = (n - k + 1) \left(\frac{1}{m} \right)^k \]

Deviation?
The Method of Bounded Differences in Action: Pattern Matching

- a random string of length n
- a pattern of length k
- # of matched substrings?

an alphabet Σ with $|\Sigma| = m$, a fixed pattern $\pi \in \Sigma^k$

independently and uniformly generate: $X_1, X_2, \cdots, X_n \in \Sigma$

let Y be number of substrings π in $\langle X_1, X_2, \cdots, X_n \rangle$
The Method of Bounded Differences in Action:

Pattern Matching

- a random string of length n
- a pattern of length k
- # of matched substrings?

an alphabet Σ with $|\Sigma| = m$, a fixed pattern $\pi \in \Sigma^k$

independently and uniformly generate: $X_1, X_2, \ldots, X_n \in \Sigma$

let Y be number of substrings π in $\langle X_1, X_2, \ldots, X_n \rangle$

$Y = f(X_1, X_2, \ldots, X_n)$
The Method of Bounded Differences in Action:
Pattern Matching

• a random string of length \(n \)
• a pattern of length \(k \)
• # of matched substrings?

an alphabet \(\Sigma \) with \(|\Sigma| = m \), a fixed pattern \(\pi \in \Sigma^k \)

independently and uniformly generate: \(X_1, X_2, \ldots, X_n \in \Sigma \)

let \(Y \) be number of substrings \(\pi \) in \(\langle X_1, X_2, \ldots, X_n \rangle \)

\[Y = f(X_1, X_2, \ldots, X_n) \]
The Method of Bounded Differences in Action: Pattern Matching

- a random string of length \(n \)
- a pattern of length \(k \)
- # of matched substrings?

an alphabet \(\Sigma \) with \(|\Sigma| = m \), a fixed pattern \(\pi \in \Sigma^k \)

independently and uniformly generate: \(X_1, X_2, \ldots, X_n \in \Sigma \)

let \(Y \) be number of substrings \(\pi \) in \(\langle X_1, X_2, \ldots, X_n \rangle \)

\[Y = f(X_1, X_2, \ldots, X_n) \]
The Method of Bounded Differences in Action: Pattern Matching

- a random string of length n
- a pattern of length k
- # of matched substrings?

an alphabet Σ with $|\Sigma| = m$, a fixed pattern $\pi \in \Sigma^k$

independently and uniformly generate: $X_1, X_2, \ldots, X_n \in \Sigma$

let Y be number of substrings π in $\langle X_1, X_2, \ldots, X_n \rangle$

$Y = f(X_1, X_2, \ldots, X_n)$

changing any X_i changes f for at most k
The Method of Bounded Differences in Action:
Pattern Matching

• a random string of length n
• a pattern of length k
• # of matched substrings?

an alphabet Σ with $|\Sigma| = m$, a fixed pattern $\pi \in \Sigma^k$

independently and uniformly generate: $X_1, X_2, \ldots, X_n \in \Sigma$

let Y be number of substrings π in $\langle X_1, X_2, \ldots, X_n \rangle$

$Y = f(X_1, X_2, \ldots, X_n)$

changing any X_i changes f for at most k

$$\mathbb{P}(|Y - \mathbb{E}(Y)| \geq tk\sqrt{n}) \leq 2e^{-t^2/2}$$
Concentration Inequalities

Question: probability that X deviates more than δ from expectation?
Concentration Inequalities

Question: probability that X deviates more than δ from expectation?

For independent r.v. $X_1, X_2, \cdots, X_n \in \{0, 1\}$, let $X = \sum_{i=1}^{n} X_i$, and $\mu = \mathbb{E}(X)$, then:

For any $\delta > 0$,

$$\mathbb{P}(X \geq (1 + \delta)\mu) \leq \left(\frac{e^\delta}{(1+\delta)(1+\delta)}\right)^\mu$$

For $0 < \delta < 1$,

$$\mathbb{P}(X \leq (1 - \delta)\mu) \leq \left(\frac{e^{-\delta}}{(1-\delta)(1-\delta)}\right)^\mu$$
Concentration Inequalities

Question: probability that X deviates more than δ from expectation?

For independent r.v. $X_1, X_2, \cdots, X_n \in \{0, 1\}$, let $X = \sum_{i=1}^{n} X_i$, then:

For independent r.v. X_1, X_2, \cdots, X_n where $X_i \in [a_i, b_i]$, let $X = \sum_{i=1}^{n} X_i$, then:

for any $t > 0$,

$$\mathbb{P}(X \geq \mathbb{E}(X) + t) \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)$$

$$\mathbb{P}(X \leq \mathbb{E}(X) - t) \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)$$
Concentration Inequalities

Question: probability that X deviates more than δ from expectation?

For independent r.v. $X_1, X_2, \cdots, X_n \in \{0, 1\}$, let X_i for any i.

For independent r.v. X_1, X_2, \cdots, X_n where $X_i \in [a_i, b_i]$, let X_i for any i.

Let Y_0, Y_1, \cdots be a martingale with respect to X_0, X_1, \cdots such that for all $k \geq 1$,

$$|Y_k - Y_{k-1}| \leq c_k$$

Then,

$$\mathbb{P}(|Y_n - Y_0| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{k=1}^{n} c_k^2} \right)$$
Concentration Inequalities

Question: probability that X deviates more than δ from expectation?

For independent r.v. $X_1, X_2, \cdots, X_n \in \{0, 1\}$, let $X = (X_1, \cdots, X_n)$. Let Y_0, Y_1, \cdots be a martingale with respect to X_0, X_1, \cdots

Let $X = (X_1, \cdots, X_n)$ and let f be a function of X_0, X_1, \cdots, X_n satisfying that, for all $1 \leq i \leq n$,

$$|\mathbb{E}(f(X) \mid X_1, \cdots, X_i) - \mathbb{E}(f(X) \mid X_1, \cdots, X_{i-1})| \leq c_i$$

Then,

$$\mathbb{P}(|f(X) - \mathbb{E}(f(X))| \geq t) \leq 2 \exp \left(- \frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right)$$
Concentration Inequalities

Question: probability that X deviates more than δ from expectation?

For independent r.v. $X_1, X_2, \cdots, X_n \in \{0, 1\}$, let $X = (X_1, \cdots, X_n)$ and let f be a function of X_0, X_1, \cdots, X_n satisfying that, for all $1 \leq i \leq n$, let Y_0, Y_1, \cdots be a martingale with respect to X_0, X_1, \cdots.

Let $X = (X_1, \cdots, X_n)$ be n independent random variables and let $f(X)$ be a function satisfying the Lipschitz condition with constants c_i where $1 \leq i \leq n$, then:

$$
P(|f(X) - \mathbb{E}(f(X))| \geq t) \leq 2 \exp \left(- \frac{t^2}{2 \sum_{i=1}^{n} c_i^2 } \right)$$
Concentration Inequalities

Question: probability that X deviates more than δ from expectation?

For independent r.v. $X_1, X_2, \cdots, X_n \in \{0, 1\}$, let $X = (X_1, \cdots, X_n)$ and let f be a function of X_0, X_1, \cdots, X_n satisfying that, for all $1 \leq i \leq n$, f is a function of X_0, X_1, \cdots, X_n and X_i.

Let Y_0, Y_1, \cdots be a martingale with respect to X_0, X_1, \cdots, X_n. Then:

$$\Pr(|f(X) - \mathbb{E}(f(X))| \geq t) \leq 2 \exp \left(-\frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right)$$