Randomized Algorithms

南京大学
尹一通
Random Walk

- stationary:
 - convergence;
 - stationary distribution;
- **hitting time**: time to reach a vertex;
- **cover time**: time to reach all vertices;
- **mixing time**: time to converge.
Mixing Time

Markov chain: $\mathcal{M} = (\Omega, P)$

- **mixing time**: time to be close to the stationary distribution
Total Variation Distance

- two probability measures p, q over Ω:

 \[p, q \in [0, 1]^{\Omega} \quad \sum_{x \in \Omega} p(x) = 1 \quad \sum_{x \in \Omega} q(x) = 1 \]

- total variation distance between p and q:

 \[\| p - q \|_{TV} = \frac{1}{2} \| p - q \|_1 = \frac{1}{2} \sum_{x \in \Omega} |p(x) - q(x)| \]

- equivalent definition:

 \[\| p - q \|_{TV} = \max_{A \subseteq \Omega} |p(A) - q(A)| \]
Mixing Time

Markov chain: $\mathcal{M} = (\Omega, P)$

stationary distribution: π

$p_{x}^{(t)}$: distribution at time t when initial state is x

$\Delta_{x}(t) = \| p_{x}^{(t)} - \pi \|_{TV}$ \quad $\Delta(t) = \max_{x \in \Omega} \Delta_{x}(t)$

$\tau_{x}(\epsilon) = \min \{ t \mid \Delta_{x}(t) \leq \epsilon \}$ \quad $\tau(\epsilon) = \max_{x \in \Omega} \tau_{x}(\epsilon)$

- mixing time: $\tau_{\text{mix}} = \tau(1/2e)$

rapid mixing: $\tau_{\text{mix}} = (\log |\Omega|)^{O(1)}$

$\Delta(k \cdot \tau_{\text{mix}}) \leq e^{-k}$ \quad and \quad $\tau(\epsilon) \leq \tau_{\text{mix}} \cdot \left[\ln \frac{1}{\epsilon} \right]^{1/2}$
Coupling

$p, q : \text{distributions over } \Omega$

A distribution μ over $\Omega \times \Omega$ is a coupling of p, q if

$$p(x) = \sum_{y \in \Omega} \mu(x, y) \quad q(x) = \sum_{y \in \Omega} \mu(y, x)$$
Coupling Lemma

1. \((X,Y)\) is a coupling of \(p,q\) \(\implies \Pr[X \neq Y] \geq \|p - q\|_{TV}\)

2. \(\exists\) a coupling \((X,Y)\) of \(p,q\) s.t. \(\Pr[X \neq Y] = \|p - q\|_{TV}\)
Coupling of Markov Chains

a coupling of $\mathcal{M} = (\Omega, P)$ is a Markov chain (X_t, Y_t) of state space $\Omega \times \Omega$ such that:

• both are faithful copies of the chain

$$\Pr[X_{t+1} = y \mid X_t = x] = \Pr[Y_{t+1} = y \mid Y_t = x] = P(x, y)$$

• once collides, always makes identical moves

$$X_t = Y_t \quad \Rightarrow \quad X_{t+1} = Y_{t+1}$$
Markov Chain Coupling Lemma

Markov chain: \(\mathcal{M} = (\Omega, P) \)

stationary distribution: \(\pi \)

\(p_x^{(t)} \): distribution at time \(t \) when initial state is \(x \)

\[\Delta_x(t) = \| p_x^{(t)} - \pi \|_{TV} \quad \Delta(t) = \max_{x \in \Omega} \Delta_x(t) \]

Markov Chain Coupling Lemma:

\((X_t, Y_t) \) is a coupling of \(\mathcal{M} = (\Omega, P) \)

\[\Delta(t) \leq \max_{x,y \in \Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y] \]
$p_x^{(t)}$: distribution at time t when initial state is x

Markov Chain Coupling Lemma:

(X_t, Y_t) is a coupling of $\mathcal{M} = (\Omega, P)$

$$\Delta(t) \leq \max_{x, y \in \Omega} \operatorname{Pr}[X_t \neq Y_t \mid X_0 = x, Y_0 = y]$$

$$\Delta(t) = \max_{x \in \Omega} \| p_x^{(t)} - \pi \|_{TV}$$

$$\leq \max_{x, y \in \Omega} \| p_x^{(t)} - p_y^{(t)} \|_{TV}$$

$$\leq \max_{x, y \in \Omega} \operatorname{Pr}[X_t \neq Y_t \mid X_0 = x, Y_0 = y]$$

(coupling lemma)
\(M = (\Omega, P) \) stationary distribution: \(\pi \)

\(p_{x}^{(t)} \): distribution at time \(t \) when initial state is \(x \)

\(\Delta_{x}(t) = \| p_{x}^{(t)} - \pi \|_{TV} \quad \Delta(t) = \max_{x \in \Omega} \Delta_{x}(t) \)

\(\tau_{x}(\epsilon) = \min\{ t \mid \Delta_{x}(t) \leq \epsilon \} \quad \tau(\epsilon) = \max_{x \in \Omega} \tau_{x}(\epsilon) \)

Markov Chain Coupling Lemma:

\((X_{t}, Y_{t})\) is a coupling of \(M = (\Omega, P) \)

\(\Delta(t) \leq \max_{x, y \in \Omega} \Pr[X_{t} \neq Y_{t} \mid X_{0} = x, Y_{0} = y] \)

\(\max_{x, y \in \Omega} \Pr[X_{t} \neq Y_{t} \mid X_{0} = x, Y_{0} = y] \leq \epsilon \quad \tau(\epsilon) \leq t \)
Markov Chain Coupling Lemma:

\((X_t, Y_t)\) is a coupling of \(\mathcal{M} = (\Omega, P)\)

\[\Delta(t) \leq \max_{x,y \in \Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y]\]

\[\max_{x,y \in \Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y] \leq \epsilon \quad \Rightarrow \quad \tau(\epsilon) \leq t\]
Random Walk on Hypercube

\(n \)-dimensional hypercube

\[\Omega = \{0, 1\}^n \]

lazy random walk:

- current state \(x \in \{0, 1\}^n \)
 - with prob. 1/2 do nothing;
 - pick a uniform random \(i \in \{1, \ldots, n\} \) and flip \(x_i \);

aperiodic;
irreducible;
uniform stationary distribution;
Random Walk on Hypercube

n-dimensional hypercube $\Omega = \{0, 1\}^n$

current state $x \in \{0, 1\}^n$

- with prob. $1/2$ do nothing;
- pick a uniform random $i \in \{1, \ldots, n\}$ and flip x_i;

equivalent to:

current state $x \in \{0, 1\}^n$

- pick a uniform random $i \in \{1, \ldots, n\}$ and a uniform random bit $b \in \{0, 1\}$;
- let $x_i = b;$
n-dimensional hypercube $\Omega = \{0, 1\}^n$

current state $x \in \{0, 1\}^n$

- pick a uniform random $i \in \{1, \ldots, n\}$ and a uniform random bit $b \in \{0, 1\}$;
- let $x_i = b$;

coupling rule: $\ (X_t, Y_t) \in \Omega \times \Omega$

- each step, choose the same i and b

- coupled if all indices in $\{1, \ldots, n\}$ have been fixed

Markov Chain coupling lemma:

$$\Delta(t) \leq \max_{x, y \in \Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y]$$

$$\leq \Pr[\text{n coupons are not collected in } t \text{ trials}]$$
\(n \)-dimensional hypercube \(\Omega = \{0, 1\}^n \)

- current state \(x \in \{0, 1\}^n \)
 - pick a uniform random \(i \in \{1, \ldots, n\} \) and a uniform random bit \(b \in \{0, 1\} \);
 - let \(x_i = b \);

\[
\Delta(t) \leq \Pr[\text{not}^{\text{\#}} \text{ collected in } t \text{ trials}] \\
\leq e^{-c} \quad \text{for } t = n \ln n + cn
\]

\[
\Delta(n \ln n + cn) \leq e^{-c}
\]

\[
\tau(\varepsilon) \leq n \ln n + n \ln \frac{1}{\varepsilon}
\]
Card Shuffling

Riffle Shuffle
(Gilbert-Shannon-Reeds)

1. split (cut): n cards
 binomial distribution $\text{Bin}(n,1/2)$

2. merge (interleaving):
 drops cards in sequence, proportional to the current weights

$L \frac{L}{L+R}$
$R \frac{R}{L+R}$
Card Shuffling

Riffle Shuffle (Gilbert-Shannon-Reeds)

1. **split (cut):** n cards
 - binomial distribution $\text{Bin}(n,1/2)$
 - fix k: $\binom{n}{k}$
 - choices 2^n

2. **merge (interleaving):**
 - uniform random interleaving
 - fix a cut: $\frac{1}{\binom{n}{k}}$ choices
 - any (cut-interleaving) pair: 2^{-n} prob.
Inverse Riffle Shuffle

Inverse Riffle Shuffle:

- label each card with a bit from $\{0,1\}$ uniformly and independently at random;
- move all 0 cards above all 1 cards, respecting the relative order within.

inverse of the Riffle shuffle

same uniform stationary distribution and same mixing time
Inverse Riffle Shuffle:

- label each card with a bit from \(\{0,1\} \) uniformly and independently at random;
- move all 0 cards above all 1 cards, respecting the relative order within.

coupling rule:

in each round, choose the same random bit for every card.
After each round, the cards are sorted according to the binary codes.

Lemma

After each round, the cards are sorted according to the binary codes.

- coupled if all cards have distinct labels
coupling rule:

In each round, choose the same random bit for every card

→ **coupled** if all cards have distinct labels

Markov Chain coupling lemma:

\[
\Delta(t) \leq \max_{x,y \in \Omega} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y]
\]

\[
\leq \Pr_{f:[n] \to \{0,1\}^t}[|f([n])| < n] = 1/2e
\]

birthday

\[
2^t = O(n^2) \quad \tau_{\text{mix}} \leq 2 \log_2 n + O(1)
\]
coupling rule:

in each round, choose the same random bit for every card

\[\tau_{\text{mix}} \leq 2 \log_2 n + O(1) \]

state space \(\Omega \): all permutations of \(n \) cards

\[|\Omega| = n! \quad \log |\Omega| = \Theta(n \log n) \]

| \(n=52 \) | \(t \) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| \(\Delta(t) \) | 1.000 | 1.000 | 1.000 | 1.000 | 0.924 | 0.614 | 0.334 | 0.167 | 0.003 |